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We present a new method for explaining causal interactions among people in video. The input to the overall system is video in
which people are low/medium resolution. We extract and maintain a set of qualitative descriptions of single-person activity using
the low-level vision techniques of spatiotemporal action recognition and gaze-direction approximation. This models the input
to the “sensors” of the person agent in the scene and is a general sensing strategy for a person agent in a variety of application
domains. The information subsequently available to the reasoning process is deliberately limited to model what an agent would
actually be able to sense. The reasoning is therefore not a classical “all-knowing” strategy but uses these “sensed” facts obtained
from the agents, combined with generic domain knowledge, to generate causal explanations of interactions. We present results
from urban surveillance video.

1. Introduction

The goal of intelligent surveillance is to confer upon a
computer the ability to not only detect and report on
observed activity but to reason about interactions between
agents and the scene. Reasoning has, generally, been confined
to the Artificial Intelligence (AI) community and few
Computer Vision researchers have addressed the problem
of generating explanations of dynamic scenes. Rather, the
published literature has focussed on two topics in rela-
tion to visual surveillance: first, creating low-level vision
techniques to detect and classify activities, generally on
the basis of the statistics of trajectory information; sec-
ond, detecting unusual, or inexplicable activity as defined
in relation to some model of normality. Both of these
strands have shown a considerable degree of success. But
recent developments suggest that bringing together the
techniques that operate directly on video streams with
models of how humans interpret visual scenes will enable
a significant step towards automatic video understanding
and explanation. An additional benefit will be the ability to
query archive footage on the basis of higher-level descrip-
tions to, for example, find all instances of people meeting
together.

This work demonstrates progress towards this goal via
a new approach to causal reasoning in video. This method
is semiautomatic, requiring a guided training phase, yet
flexible and represents a serious attempt at connecting low-
level visual sensing with high-level reasoning using complex,
dynamic visual features. We show results from two different
urban surveillance videos.

The scientific state of the art is to output text com-
mentary on very constrained activity such as traffic using
simple image features such as trajectory points (see, e.g., [1]).
We propose that an accurate commentary of activity can
be acquired when there is a good intermediate description
of activity available. This enables more complex and more
general sensing of the scene than merely trajectories. In fact
we develop a sensing strategy around activity recognition
and head-pose estimation. This paper, consequently enables
the machine to explain more complex, less constrained
activity and interactions among people. The focus and the
achievement of the work presented in this paper is to explain
interactions between human agents and to do it in a way
which can be applied in different domains where people
interact.

To aid the reader we now give a brief paper roadmap.
In Section 2 we review related prior work in the published
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Figure 1: Background segmentation is used a precursor to track via
mean shift. Head images are then centred within the target window.

literature and, in Section 2.1, we highlight the main contri-
butions of this work in relation to the literature. In Section 3
we discuss the vision algorithms that form the basis of the
lowest level of our system. In Section 4, we introduce the
reasoning process itself: Section 4.3 presents the full process
applied to real urban surveillance scenarios. We include
evaluation and discussion of failure modes. We conclude and
discuss some future research directions in Section 5.

2. Related Work

Making sense of a scene can be thought of as, “Assessing
its potential for action, whether instigated by the agent or
set in motion by forces already present in the world” [2].
In other words, a causal interpretation is most easily and
most commonly judged by the motion effects that take place.
Michotte [3], with Heider and Simmel [4] showed that
it is the kinematics of objects, not their appearance, that
produce the perception of causality [5]. There is, nonetheless,
a history in scene understanding research of analysing static
scenes. In the work [2, 6], for example, the causal explanation
of a static scene is found in the answer to the question,
Why does not this object fall down? MugShot [6] which
can successfully pick up cups filled with hot fluid, is one
example of a system where static causal relationships can
be learned. This is an example of an explanation-mediated
vision system which has two important aspects for learning:
expectations and explanations. The former, if they fail, are
opportunities to learn; the latter provide the context and
material for learning. In such a system, where knowledge
runs out, the system cannot make sense of the scene and a
rule has to be introduced to prevent repeated failure. Indeed,
Pearl indicates that it is the availability of prior knowledge
that allows the inference problem to be structured in such a
way as to be amenable to causal reasoning [7].

Robust computer vision methods have only recently
begun to be exploited for obtaining low-level information
about complex visual scenes and agents within them [8]. The
work of Brand et al. relied on the extraction of very simple,
static visual features from images of blocks against a white
background [2]. Siskind demonstrated reasoning about
the dynamic interactions between tracked blobs (hands,
blocks) in simple video sequences [9]. Our work addresses

this problem by applying low-level vision techniques to
generate probabilistic estimates over qualitative descriptions
of human activity in video [10, 11].

“Anything that can be viewed as perceiving its environ-
ment through sensors and acting upon that environment
through effectors” is an agent, according to Russel and
Norvig [12]. An agent is, therefore, analogous to a software
function. When human agents are combined, complex
behaviour emerges which can model a real-world behaviour
as demonstrated by Andrade and Fisher for simulated crowd
scenes [13]. There are many types of agent defined in the
AI literature. The Belief-Desire-Intention agent, originally
developed by Bratman [14], is believed to model decision-
making process humans use in everyday life [15].

Related to agents, and of most direct relevance to the
work of this paper, is the work of Dee and Hogg [16]. In
their work, a particular model of human behaviour is verified
by comparing how “interesting” the model indicates the
observed behaviour is to how worthy of further investigation
a human believes the behaviour to be. Their work focuses
on inferring what an agent can sense through line-of-sight
projection of rays and the subsequent use of a predefined
model of goal-directed behaviour to predict how the agent
is expected to behave. Not all of the information required for
reasoning is automatically extracted from the images.

There have been notable efforts to explain behaviour
using low-level information only and to bridge the “seman-
tic gap” [17, 18]. Many of these reported works have
applied variants of the HMM [19, 20] from which readable
semantic labels are difficult to derive, in contrast to our
work. Turaga et al. have considered the importance of the
descriptive language used in action-recognition semantics
[21].

On rule-based reasoning, Siler notes that rules have,
“. . .shown the greatest flexibility and similarity to human
thought processes. . .” [22]. These rules can be quickly
identified and written down by an expert. A significant
positive aspect of rule-based reasoning is that it is easy to
update the system’s knowledge by adding new rules without
changing the reasoning engine [23]. It is also easy to transfer
between applications by specifying a new set of rules.

2.1. Reasoning from the Perspective of an Agent versus the
Camera. In order to formulate an effective reasoning process
in this work we combine a rule-based approach with a visual
sensing strategy that models what the agents can actually
sense in the scene. The classical approach to reasoning
about human activity is to initiate an “all-knowing” visual
process to gather information about the entire scene. That
is, reasoning takes place from the camera perspective. In this
work we shift the emphasis from the camera to the agent
within the scene. To do this, we model a generic person agent
and consider what information its sensors can realistically
gather given the constraints of its environment. Limiting
the sensing in the scene to realistically model the agent’s
perceptive ability has been considered, although not to the
extent which we propose or in as challenging an environment
as outdoor surveillance for the use of focus of attention [24].
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Figure 2: Head images obtained from the stabilised mean-shift image patch tracker, background subtracted images, and the weight images
representing the probability that each pixel in the head is skin/nonskin are shown in the top group of images. The concatenation of skin and
nonskin weight vectors is our feature vector which we use to determine eight distinct head poses shown in the bottom group.

The reasoning system then takes a limited set of all
information which is theoretically available, but in doing
so enables more realistic agent-perspective reasoning to take
place. The generality of our approach is therefore found not
in a common set of rules which can be applied across many
different domains but in a common set of facts which can
be derived from the sensor of a person agent regardless
of the domain in which that agent is operating. Critically,
the only element of the entire system which requires re-
coding between scenarios is (a) the initial training data and
(b) the rule set. Moreover, the time taken to encode rules
is considerably reduced by the fact that the lower-level of
the system extracts qualitative descriptions which enables
a user to write rules in useable code very efficiently (see
the appendix for instances). Provided the set of all possible
events and interactions is not unbounded, specifying these
rules is a much less onerous task than gathering and labelling
sufficient quality training examples.

2.2. Contributions of This Work. (i) The main contribution of
this work is that we demonstrate an extension to the scientific
state of the art by reasoning about dynamic scenes with
complex visual features which describe human motion with
a significant temporal extent. Previous attempts at causal
reasoning have been limited to scenes with simple visual
features such as feature points and blobs.

(ii) We also introduce a reasoning strategy which is
shown to be effective in different application domains where
there are interactions between people. This is possible due to
the extraction of scene information which models the input

to the “sensors” of a general person agent. Notably, the lack of
robust vision techniques for information input to the sensors
of agents has been identified as a significant weakness in
visual surveillance [8], which is now addressed by this work.

(iii) Finally, the generation of plausible human-readable
explanations of interactions between people directly from
video streams with is achieved which is in contrast to the
state of the art which obtains simple commentaries on single-
person activity.

3. Low-Level Visual Sensing

We first describe the algorithms which generate descriptions
of an agent’s instantaneous activity. Full detail can be found
in the literature, and we recapitulate the salient details here
[10, 11, 25].

The algorithms we employ compute probability dis-
tributions over hand-labelled exemplar databases using
Bayesian fusion. The maximum a posteriori (MAP) output
constitutes qualitative descriptions of (a) gaze direction, that
is, where the person is looking in the scene (Section 3.2),
(b) spatiotemporal action, for example, “running on the
road” (Section 3.3) and (c) behaviour, that is, spatiotemporal
actions extended over time such as “crossing the road”
(Section 3.4).

Gaze direction is particularly significant for inferring
intention and for detecting interactions. Clearly it is not
the only cue—proximity and context are also important—
but it has been recognised by vision researchers that human
gaze is a predictor of intention [24]. For the purposes of
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Figure 3: The exemplar, or training, database is constructed for
the descriptor feature set (both gaze direction and spatiotemporal
action) and a PCA binary tree constructed. This image shows one
level of the binary tree with the indices into frames on the y-axis and
the node on the x-axis. A shaded block represents the occupancy
of that frame at that node. The nodes shown are at depth 3 of the
tree. This demonstrates that the tree is quite evenly split, which is
important for traversal when searching.
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Figure 4: We sample from the exemplar databases to produce a
distribution over the training data given some input descriptor. In
this case, the descriptor is the probability of skin/nonskin pixels
in the face image shown at the top left. The PCA decomposition
of the descriptor is used to decide how to traverse the binary
tree, branching depending on the sign once the median has been
subtracted (to balance the tree). At each branching of the tree a
randomness factor is computed (based on a Gaussian) which results
in the leaf nodes of the tree being explored. The leaf nodes are
indices into the database which, in turn, point to specific frames
in a sequence. We show here the illustrative matches generated for
10 samples with associated probabilities.

causal reasoning, this action-recognition system populates
a set of “facts” which collects all the information available
to the reasoning engine. This lower-level component of the
system answers questions in a probabilistic fashion such
as Where is the agent? What is he/she doing? Where are
they looking? The language used ultimately to describe
interactions is also defined at this stage by the expert’s hand-
labelled descriptions of the exemplar data.

3.1. Visual Tracking. The extraction of low-level descriptions
of activity is predicated on repeatedly locating a person in
the video. Throughout this work we use the mean-shift
tracker. The target of interest is initiated using background
subtraction and the target model (histogram) thus defined.
The mean-shift algorithm uses the Bhattacharyya coefficient
as the similarity measure between two distributions which
are discretised into u bins: p(y) at the current image window
centred at y and q, the target model histogram. This is given
by

ρ
(
p, q

) =
∑

u

√
puqu , (1)

which is maximised for every frame using an efficient itera-
tive algorithm [26]. We further employ occlusion reasoning
to recover the track when a person disappears behind a tree
or another person, for example. When the Bhattacharyya
coefficient drops below a certain value, the search window
is expanded by computing the Bhattacharyya coefficient for
a grid of windows around the current location and, provided
the target has not disappeared altogether or moved out with
even this wider search region, the location can be recovered
[27].

3.2. Gaze Direction Approximation. The first lower-level
component of our system estimates where a person is looking
in images where the head is typically in the range 20 to
40 pixels high [11]. In order to achieve head-pose estimation
we use a feature vector based on skin detection to estimate
the orientation of the head, which is discretised into 8
different orientations, relative to the camera. The pixels of
the currently tracked head are compared to a reference skin
histogram and weighted according to the likelihood that they
are drawn from the same distribution. The visual tracker
extracts a window containing the person in every frame.
For accurate head-pose estimation we must centre the head
within the window. As shown in Figure 1, automatic location
of the head is achieved by segmenting the target using
background subtraction and morphological operations with
a kernel biased towards the scale of the target to identify
objects. The head is taken as the top 1/7th of the entire
body. The head is automatically centred in the bounding
box at each time step to stabilise the tracking and provide
an invariant descriptor for head pose. The descriptor of
head pose is comprised of skin and nonskin pixels, which
enables us to estimate 8 distinct head poses, as shown in
Figure 2. A fast sampling method returns a distribution
over previously seen head poses, which we now describe in
detail.
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Figure 5: Applying head-pose approximation to an urban scene. Error versus hand-labelled ground truth is shown on the right.
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Figure 6: The target-centred spatiotemporal action descriptor. (a) The optical flow vectors, (b) the blurred optic flow in the x and y direction
is further split into the four Gaussian blurred nonnegative channels.

3.2.1. Fast Sampling from a Database of Labelled Exemplars.
Sidenbladh and Black structure a large database of high-
dimensional points as a binary tree via principal component
analysis of the data set [28]. The children of each node at
level i in the tree are divided into two sets: those whose
ith component (relative to the PCA basis) is larger and
those whose value is smaller than the mean. In Sidenbladh’s
application each data point comprised the concatenated
joint angles over several frames of human motion capture
data. The method, however, applies equally well to our
application of image feature data and the pseudorandom
search algorithm is identical to that derived in [28].

If Ψ is a length dm vector representing the median of
all the sequences of head-pose descriptors (the skin/nonskin
feature vectors), that is,

Ψ = 1
n

n∑

i=1

Ψi,

Â =
[
Ψ̂i, . . . , Ψ̂n

]
(2)

is a dm × n matrix containing all the sequences with
the median of the entire set of training descriptors
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samples of the motion-descriptor database (top right). The more complete information is provided by the sampled distribution of matches
from the database (bottom row).
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Figure 8: Velocity, motion-type, and position are equally important for action recognition. Legend: “PVM” denotes results with velocity
feature, “PM” without (i.e., position, motion only). See text for further explanation.



EURASIP Journal on Image and Video Processing 7

Frame Activity Likelihood

Walking on far-side pavement

Walking on road

0.86

0.94

0.94

P1: walk fs pave P1: walk road P1: walk ns pave

1–70

71–225

226–450 Walking on nearside pavement

Figure 9: An accurate commentary is obtained for this urban street scene where the person moving in from the top right of the images is
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Figure 10: A second example of commentary extraction from a more challenging surveillance scene.

subtracted, by applying Singular Value Decomposition we
write

Â = UΣVT , (3)

where the dm × n matrix U contains the principal compo-
nents of Â and Σ is diagonal matrix containing the standard
deviation σl accounted for by the principal components l =
1, . . . ,n. Any sequence in the database can be approximated
by

Ψmatch = Ψ + Ucmatch, (4)

where cmatch is the sampled nearest-neighbour match from
one traversal of the binary tree.

Significantly, the first b = log2(n) (where n is the
number of time intervals in the training data) components
are selected.

If n ≈ 50000 and b = 16 this accounts for 89% of the
variance in the training data, that is,

∑b
l=1 σ

2
l∑n

l=1 σ
2
l

≥ 0.89. (5)

These components are then organised into a binary tree;
the nodes of which are split on the basis of the sign of the
components once the median value has been subtracted:

ci =
[
ci,1, . . . , ci,b

]
. (6)

The search of the tree is randomised by the inclusion of a
random perturbation of the traversal of the tree drawn from
a Gaussian distribution. That is, it is decided which branch of
the tree to choose, at each level l for the Principal Component
coefficient at that node ct,l and the input coefficients at that
level, ci,l, based on the probabilities:

pright = p
(
ct,l ≥ 0 | ci,l

) = 1√
2πσl

∫ ct,l

z=−∞
exp−z

2/2σ2
l dz,

pleft = 1− pright.
(7)

At the leaf nodes a linear search takes place if there is
more than one match. The probability of these matches is
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Figure 11: For the single person tracked (from top of image) in this video sequence we compute the likelihood of each of the behaviour
models in the bank of models explaining the current action sequence. “Crossroad” is chosen as the correct model.

computed on the basis of how “close” the match in the
database is to the input, that is,

p
(
match | input

) ∝ exp−
(∣
∣match− input

∣
∣

σ

)2

. (8)

This search method is used for two reasons: it is more
efficient, and the ability to return multiple neighbours
represents a distribution over possible actions, that is, a
likelihood. The search time is improved by a factor of 20
and, since we sample many times, the search provides a set
of particles which represents a distribution over the exemplar
feature vectors into frames of the previously seen examples.
An example of the distribution of frames at the nodes for
a certain depth of the tree is given in Figure 3. An example
of the sampling of previously seen examples from the tree is
shown in Figure 4.

3.2.2. Combining Head Pose and Body Direction. The sam-
pling method returns a distribution over possible head
poses. Used on its own this can be noisy and so we
use body direction to smooth the gazing approximation.
Note that a number of assumptions are required which are

valid in large-scale outdoor surveillance scenes but may not
hold in indoor situations or even different social settings
(see [29]). These are, briefly, that the person does not
change direction based on gaze, that anatomicallyimpossible
gazes (looking backwards) are rejected and that gaze varies
smoothly.

The overall body pose relative to the camera frame is
approximated using the velocity of the body, obtained via
automaticallyinitiated colour-based tracking in the image
sequence. By combining direction and head-pose informa-
tion gaze is determined more robustly than using each
feature alone.

We compute the joint posterior distribution over direc-
tion of motion and head pose, which gives us the gaze.
The priors on these are initially uniform for direction of
motion, reflecting the fact that there is no preference for any
particular direction in the scene. For head pose however a
centred, weighted function models a strong preference for
looking forwards rather than sideways. The prior on gaze
is defined specified using physical constraints, that is, by
considering only physically possible gazes.

Let us define h as the measurement of the head pose from
the images, d is the measurement of body motion direction,
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Figure 12: A single HMM associated with the turning-into-drive
behaviour is used to classify the same behaviour but performed in
different ways. This is because the input/output to the stochastic
model is distributions over instantaneous, abstracted actions, not
image coordinates.

G is the true gaze direction, and B is the true body direction,
with all quantities referred to the ground centre. We then
compute the joint probability of true body pose and true
gaze:

P(B,G | d,h) ∝ P(d,h | B,G)P(B,G). (9)

Now given that the measurement of direction d is
independent of both true gaze and measured head-pose G,h
once true body B pose is known, P(d | B,G,h) = P(d |
B) and similarly that the measurement of head-pose h is
independent of true body pose B given true gaze G, P(h |
B,G) = p(h | G), then we have

P(B,G | d,h) ∝ P(h | G)P(d | B)P(G | B)P(B). (10)

We assume that the measurement errors in gaze and
direction are unbiased and normally distributed around the
respective true values

P(h | G) = N
(
G, σ2

G

)
, P(d | B) = N

(
B, σ2

B

)
. (11)

The joint prior, P(B,G) is factored as above into P(G |
B)P(B) where the first term encodes our knowledge that
people tend to look straight ahead. Thus the distribution
P(G | B) is peaked around B, while P(B) is taken to be
uniform. This encodes our belief that all directions of body
pose are equally likely.

Table 1: Comparison of detection rate for three types of head-pose
matching search.

Search type Accuracy (%) Time (secs)

NN (full data) 83.2 0.461

NN (PC coeffs) 81.9 0.426

Sampling 77.9 0.023

While for single frame estimation this formulation fuses
the measurements (of head pose and body direction) with
prior beliefs, when analysing video data we can further
impose smoothness constraints to encode temporal coher-
ence: the joint prior at time t is in this case taken to be
P(Gt ,Bt | Gt−1,Bt−1) = P(Gt | Bt ,Gt−1)P(Bt | Bt−1),
where we use the assumption that the current direction
is independent of previous gaze. This is motivated by the
observation that, in outdoor areas, people tend to have a
fixed idea of where to go and this only changes due to major
distractions in the visual field. We do recognise that, in a very
limited set of cases (primarily indoors), this may in fact be a
poor assumption since people may change their motion or
pose in response to observing something interesting while
gazing around. We also assume that current gaze depends
only on current pose and previous gaze which is clearly
a robust assumption. The former term, P(Gt | Bt ,Gt−1),
strikes a balance between the belief that people tend to look
where they are going, and temporal consistency of gaze via a
mixture Gt ∼ αN (Gt−1, σ2

G) + (1− α)N (Bt , σ2
B).

Now we compute the joint distribution for all 64 possible
gazes resulting from possible combinations of 8 head poses
and 8 directions. The discretisation of the full 360◦ into 8
poses is shown in Figure 2. This posterior distribution allows
us to maintain probabilistic estimates without committing to
a defined gaze, and this is advantageous for further reasoning
about overall scene behaviour. Immediately though we can
see that gazes which we consider very unlikely given our prior
knowledge of human biomechanics (since the head cannot
turn beyond 90◦ relative to the torso [30]) can be rejected in
addition to the obvious benefit that the quality of lower-level
match can be incorporated in a mathematically sound way.

3.2.3. Results. Table 1 shows the performance increase using
this method over nearest-neighbour search. As expected full
comparison of the input descriptor (first row) gives best
results with comparison using the Principal Components
giving similar results. The sampling method described in
the text returns a distribution over possible matches and
the figures quoted are for the frequency of ML match
corresponding to a true match and when a match is found
in the distribution. While detection rate is inferior the
probabilistic information can be exploited and the search is
considerably faster.

Results from a range of test sequences show that we
achieve gaze direction approximation with a median error of
5.5◦ using this method against standard surveillance scenes
(the CAVIAR dataset (http://groups.inf.ed.ac.uk/vision/
CAVIAR/)). When applied to faces from our own Dataset 2
we achieve even better performance: the mean error is 5.64◦,
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Figure 13: A schematic diagram of the reasoning process initiated when the event “move-to-road” is detected.

Figure 14: The second scene is divided into regions and labelled
by an analyst. The semantically-labelled regions, activities and
directions for this scene are detailed.

the median 0.5◦, as shown in Figure 5. The ground truth for
this error computation is acquired by a human drawing an
estimate of the line of sight of the person on the image. (We
assume that this can be achieved to an accuracy of 10◦.) The
error is therefore the difference between the approximated
value and the quantised ground truth.

3.3. Spatiotemporal Action Recognition. In addition to gaze
direction we also require to extract basic information
about the position, velocity, and activity type (e.g., walking
versus running versus standing) of an imaged person. We
employ the same technique for sampling from hand-labelled
exemplar databases as used for gaze direction approximation,

Figure 15: A subset of the trajectories in the exemplar data
representative of expected activity in this urban scene are shown
here.

returning a probability distribution over a set of training
examples, where the qualitative labels of place, direction,
and action type have been identified by an expert user. This
labelling holds three significant advantages:

(1) high-level descriptions can be incorporated by a
qualified expert;

(2) by sampling nonparametrically from the data, far less
training data is required than is the case for standard,
statistic-based learning techniques such as Hidden
Markov Models (HMMs);

(3) probabilistic distributions prevent one from commit-
ting to a single interpretation of activity too early.
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Frame 135

(a)

Frame 197

(b)

Frame 304

(c)

Frame 247

(d)

Figure 16: (Clockwise from top left). The “meeting” rule is initiated in this case.

Frame 30

(a)

Frame 95

(b)

Frame 175

(c)

Frame 115

(d)

Figure 17: (Clockwise from top left). The “ignore” rule is initiated after the “potential-meeting” rule.



12 EURASIP Journal on Image and Video Processing

Explanation
Person 2 move-to-road to meet on nearside-pavement
Person 2 move-to-pavement to get-off-road

(a)

Explanation

Person 1 move-to-road to avoid Person 2 on nearside-pavement
Person 1 move-to-pavement to get-off-road

(b)

Figure 18: Causal explanations of interactions in an urban
scene. Meeting (left) and ignoring (right). By searching the
action/behaviour/gaze, sensed by the agent of interest, for evidence
of hypotheses generated in response to the automatically observed
trigger event, the high-level explanations (below the frames, resp.)
are automatically generated.

Position and velocity exemplars are derived directly from
the centroid of the object as estimated using a colour-based
tracker which fixates on the tracked person [26]. Action
type is then encoded from the target-centred images using
a descriptor based on optic flow, which is essentially the
descriptor of Efros et al. [31]. This descriptor is derived
from the flow vectors between image pairs. Four nonnegative
channels are computed, as shown in Figure 6. These chan-
nels provide sufficient discriminative power to differentiate
among a set of basic actions when imaged at a distance.

The position, velocity, and action-type databases are
maintained independently. This enables more efficient use
of each feature, significantly reducing the overall volume of

training data required. The independent distributions over
the feature databases are computed via an efficient Principal
Components Analysis- (PCA-) based sampling tree. The
output of one such sampling produces a discrete distribution
as shown in Figure 7.

By fusing the likelihoods of the matches from the posi-
tion, velocity, and motion-descriptor exemplars we compute
the probability of a spatiotemporal action such as walking-
left-to-right-on-nearside-pavement. We use a Bayes Net to
effect this information fusion: if the spatiotemporal action
is denoted, a, x is the index into a qualitative position label
in the database; similarly v is the index into a qualitative
direction label, and m is the index into a person-centred
action label, then assuming conditional independence
yields

p(a, x, v,m) = p(a)p(x | a)p(v | a)p(m | a). (12)

The distributions p(xmatch | xinput), p(vmatch | vinput)
and p(mmatch | minput) are estimated by sampling from the
databases. We compute the marginal distribution p(a) since,
for any given data d (here x, v and m),

p(d | a) = p(a | d)p(d)
p(a)

. (13)

p(a | d) is specified in the conditional probability
table for the node a, p(d) is defined from the frequency of
occurrence of data d in the training set and p(a) is uniform
in most cases.

By taking the ML estimate from this distribution over
all possible spatiotemporal actions at each time step, a com-
mentary on activity is generated. An example of the MAP
distribution which highlights the significance of each feature
(position, motion-type, and velocity) is given in Figure 8. In
this example, the ML motion type is incorrectly classified as
walking. When the resulting distributions from each of the
inputs, position, velocity, and motion type are fused the ML
estimate is now correctly identified as running-on-nearside-
pavement. The action probability distributions when velocity
is excluded (right-hand distribution) and included (left-
hand distribution, i.e., shaded bars) are compared clearly
showing the importance of each feature.

An example of the resulting commentary for surveillance
video, which is achieved by taking the ML result at each
frame, is shown in Figure 9. The priors on spatiotemporal
actions are derived directly from the training datasets, on
the basis of frequency of occurrence. They may also be
specified by hand. In the second commentary example of
Figure 10, the priors are critical to the choice of the correct
spatiotemporal action. Running is not represented as often in
the example database. Therefore if the priors for each simple
action are computed on the basis of frequency, then the MAP
spatiotemporal action for this sequence is road, walking. If,
however, the priors are uniform, the MAP result is as shown.
Note that in either case the correct activity is still represented
in the distribution over spatiotemporal actions.

Comprehensive statistics from the analysis of the test
sequences are discussed in Section 5.
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Frame 646Frame 468Frame 437Frame 380

Person crossing the road at traffic lights

Commentary on activity

NE-pavement, walking

N-ped-crossing, walking

N-ped-crossing, stopped

N-ped-crossing, walking

NW-pavement, walking

Explanation

Person move-to-road to cross-road at N-ped-crossing

Person move-to-pavement to get-off-road

Figure 19: The text commentary for a person crossing the road at a set of traffic lights provides the input to the reasoning engine. Here,
there is no interaction between people, but domain knowledge allows the system to recognise that the person walked onto the road, in order
to cross the road. The same rules and events set as used to generate the results in Figure 18 is successfully used here in a different scene.

Commentary on activity

Nearside pavement, walking
Road, walking
Nearside pavement, walking

Explanation

Inexplicable

Figure 20: (Clockwise from top left). This scenario is a failure
mode for the system with the rule set defined in the text. For a
causal reasoning system failure is an opportunity to learn. In this
case a true anomaly has occurred, although in other circumstances
this behaviour could be exhibited when a car is present, for
example.

3.4. Behaviour as a Sequence of Spatiotemporal Actions.
Having successfully generated probability distributions over
actions, we now use HMMs to encode known rules
about behaviour. We define behaviour as spatiotemporal
action extended over time. The MAP spatiotemporal action
is an abstraction from the images to a description of
activity in the scene in general. Taken on its own it
provides a commentary on observed activity which is
not dependent on one particular camera viewpoint. This
enables us to derive an action sequence from an automatic

parse of extended behaviour. The hidden state of the
HMM corresponds to a distribution over spatiotemporal
actions. For the scene in Figure 11 we easily encoded 3
such HMM behaviour models (“crossing road”, “walking
along pavement”, and “turning into drive”) by defin-
ing the transition and initial-state probabilities for each
model.

3.4.1. The Structure of the Behaviour HMM. The inputs to
the HMM are two vectors containing the index into the
spatiotemporal action and an associated probability of that
action. The observation probabilities are discrete and the
output of each state is the index into a spatiotemporal
action (with associated likelihood). So, for example, for
the behaviour “Crossroad”, above the parameters of the
behaviour HMM are specified as follows:

Π=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0
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0.4 0 0.6 0

0 0 0 1

⎞
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⎟
⎟
⎠
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⎛

⎜
⎜
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⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(14)

where Π is the matrix of priors, A is the state transition
matrix, and B is the observation matrix. The outputs from
each state are parameterised by a Gaussian distribution
centred on the state value. The states in this example
correspond to

(1) walk on the nearside pavement,

(2) walk on the far-side pavement,

(3) walk on the road,

(4) walk in the driveway.

In the above example, the interpretation of the state
transition matrix, A is as follows.

(i) When walking on the near-side pavement (state 1),
the person will stay on the nearside pavement.
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(ii) When walking on the far-side pavement, the person
will most likely keep walking on the far-side pave-
ment (state 2), but a transition to the road (state 3)
is allowed.

(iii) When walking on the road, the person will most likely
stay walking on the road (state 3), but can move to the
action walking on the nearside pavement (state 1).

(iv) When the person is walking in the drive (state 4), no
transitions are allowed as this action is not expected
to occur.

Similarly, behaviour HMMs are specified for the other
behaviours, “Walking-along-nearside-pavement” (which is
quite trivial, being a continuous sequence of walking-on-
pavement actions) and “Turn-into-drive”.

3.4.2. Model Selection. Online estimation of which model
best explains the observed MAP action sequence (not the raw
image data) enables the estimation of higher-level behaviour.
The ML sequence of actions and their likelihoods over a
number of time steps is used to find the most likely behaviour
by computing the likelihoods of each of the predefined
normal behaviour HMMs explaining the current action
sequence. Since more complex models generally explain
data better we use a likelihood ratio to compare competing
behaviour models. The likelihood ratio for comparing two
hypotheses H and H ′ with probabilities p(H) and p(H ′),
respectively, is computed as

LR = 2
(
log
(
p(H)

)− log
(
p(H ′)

))
, (15)

which has a chi-squared distribution parameterised by the
difference in the model order. If LR is greater than the 95%
confidence value of the chi-squared distribution for δ =
|O(H)−O(H ′)|, the result is statistically significant.

Note that a learning technique trained directly from
the image data would require separate exemplars, multi-
plying the training data volume. However since our HMM
behaviour models are general to the scene they can dis-
criminate between the same type of behaviour performed
in different ways without the need for separate models. An
example of this feature in operation is shown in Figure 12.
When this technique is used to generate a smoothing
prior on the action sequence we may achieve a significant
improvement in action recognition (from 60% to 88%).

4. Reasoning about Interactions

Before describing in detail the causal reasoning process and
its application in two specific example datasets we define the
terminology used in the rest of this work. In particular, we
explain the meaning of “events”, “rules”, and “facts”.

4.1. Explanation of Terminology: “Events”, “Rules” and “Facts”.
Our process for causal reasoning is to first specify a set of
“events” and “rules” pertaining to the scene. When an event
is observed by a single agent a search through the available
evidence which is observable by that agent is performed. This

search seeks to explain the current known activity given
the predefined rules. The low-level sensing component of
the system abstracts the visual information into (ML) text
descriptions of activity, the “rules” and “events” can be
encoded simply as high-level conditional statements which
act on the information available to the sensors of the agent.
It should be noted that, while the full MAP distributions
are available, only the ML text description is used by
the reasoning system. A fully probabilistic reasoning process
is much more ambitious and the subject of current work. A
number of the rules are given in the appendix. An “event” is
simply an occurrence which is predefined as interesting and
requiring explanation, such as “cross-the-road”.

The events and the rules are changed between scenarios
but the reasoning process remains the same. This reasoning
process is given in pseudocode in Algorithm 1. Although
we do specify the events which require explanation, this
is not strictly necessary. One could mandate that it is
only unexpected events that initiate the reasoning engine
(where “unusual” is defined by some probability threshold
on observed activity). Given that unusual activity is not
modelled explicitly reasoning about such events requires
a more sophisticated system than that which we develop
here. We discuss how these might be handled by a rule-
based reasoning system in Section 5.3.3. Hence, we specify
the events which need explanation and these are preloaded
into the system, along with the rules which govern the
scene.

The final piece of information required is a set of “facts”
on which the reasoning process operates, searching for an
explanation given the “rules” and the “events”. The facts
are gathered from the low-level sensing procedures as the
video is processed and take the form of text descriptions of
what is observed. These facts can be augmented with higher-
level descriptions which have come from an earlier reasoning
process. Thus the set of “facts” contains all the information
which is available to the reasoning engine at any given time.

When a trigger event occurs, a search through the
rules will take place. This is what we term generating a
“hypothesis”, that is, postulating that one of the rules is in
play. If any of the current facts lend evidence to any rule, the
facts are updated. At the end of the video, the set of facts
constitutes an “explanation”. We show this in operation in
the following sections.

4.2. Updating the “Facts”. Meanwhile, to root this expla-
nation in an example, consider that a set of facts cor-
respond to the activity of an individual (spatiotemporal
action, gazing direction). The rules shown in the appendix
(proximity, meeting, and move-to-road) operate on these
facts in a hierarchical manner. That is, the proximity rule
uses spatiotemporal action and the visibility of individuals
inferred from gazing direction, as seen in Algorithm 2.
Then, the set of facts is updated: either the people are
“together” or “not together”. The “meeting” rule then uses
this information to infer whether a meeting between people
is occurring, as shown in Algorithm 3. Finally, the move-
to-road rule operates on the updated facts which contain
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(1) load events-list
(2) load rules
(3) check facts for event in events-list
(4) for all frames in sequence do
(5) update facts list
(6) if event occurs then
(7) derive hypotheses from the rule-set
(8) for all hypotheses do
(9) search known facts for hypothesis support
(10) end for
(11) end if
(12) end for

Algorithm 1: Reasoning process.

the “meeting” event, which is shown in Algorithm 4. A
graphical illustration of this process for the “move-to-road”
event is shown in the schematic, Figure 13.

4.3. Explaining Two-Person Interactions in an Urban Location.
The primary focus of this work is mutual interactions among
people in urban surveillance. The predefined events and rules
for reasoning about interactions in an urban context are
listed in Table 2. We make the following assumptions about
the agent.

(1) The agent has knowledge of his own state which
includes action, behaviour, and gaze direction.

(2) The agent can see other agents when they fall within
the visual field, determined by the gaze direction.

(3) The agent can sense anything within a specified range
(reflecting the ability to, e.g., hear someone walking
behind).

(4) Interactions between agents are possible within a
certain proximity.

In the analysis of activity which follows it is important
to note that there is no all-knowing reasoning process which
has access to all the information taking place in the scene.
The only information which is available is derived from the
sensors of the agent of interest, that is, the agent whose
behaviour corresponds to an activity which requires to be
explained. As previously stated, this explicitly shifts the focus
from the camera to the agent in the scene and thus reasons
from the agent’s, as opposed to the global, view.

4.3.1. Detecting and Classifying Activities Using Rules. The
true reasons for events occurring are not apparent directly
from the video. A person who crossed the road in order
to meet his friend may have done so because it was
prearranged or because he happened to see his acquaintance.
It is not possible to distinguish between these hypothetical
reasons from the data alone even if the scene rules are
completely known. Rather, it requires detailed knowledge of
the intention, goals, and history of a specific individual. This
is not generally available and certainly not in a surveillance

Table 2: The set of events which trigger the reasoning engine
(left) and the set of rules which can be initiated in search of an
explanation (right) are shown here.

Trigger events list Rules list

Move to road Potential meeting

Move to pavement Meeting

Move to drive Ignoring

Stopped Avoiding

Together

Proximity

application where the individuals under observation are
anonymous. Despite this fact, a “lower” level of causality
is still in operation and this can be inferred from our
description of the scenario: the person, “. . .crossed the road
in order to meet. . .”. This type of causality is amenable to
analysis using the information we can currently obtain from
the sensors of the agents.

People meeting with one another is a common occur-
rence in an urban scene. In fact, recognising groups of
people versus independent individuals and, in particular,
detecting cooperating individuals, is a core element of the
human interpretation of urban scenes. Police surveillance
officers, for example, may be interested in an exchange of
illegal substances at a meeting of two individuals under
observation.

There are many cues humans use to distinguish between
people meeting or people ignoring one another. One such
cue, discussed in Section 3.2, is that people who are together
will generally acknowledge each other’s presence by looking
at one another periodically and at regular intervals. Other,
more obvious cues include proximity. By defining precisely
what is required for the event “meeting” to take place we
can distinguish between people passing by one another and
people meeting together.

The “proximity” of the individuals is first analysed using
Algorithm 2. A “potential meeting” is identified when agents
are within a predefined proximity in image coordinates for
a predefined period of time (typically 100 frames) and also
within one another’s field of view, that is, they must be
looking at one another. Note that the value of proximity
is preset in Algorithm 3. The number which ought to be
chosen is dependent on many factors including social criteria
and cultural norms [29] and is easily changed. The rule for
meeting is that the intermediate state potential meeting must
be the current explanation of the interaction. Additionally,
the agents must be performing the same spatiotemporal
action, for example, they are both walking-on-the-pavement.
By contrast, an “ignore” rule is initiated when the conditions
for “meeting” are not met but when a “potential meeting”
has previously occurred. If none of these agent states are
identified, there is no interaction defined.

Again we emphasise that the encoding of these rules is
very efficient and extensible. Algorithm 3 in the appendix
explicitly defines the rule for the scenario “meeting”. As can
be seen the meeting rule uses the information determined
by the “proximity” rule. Note also that the “meeting”
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algorithm explicitly requires input from the gaze direction
approximation component of the system.

4.3.2. Explaining Interactions between People. There are a
number of events which can be explained in terms of
causal relations in a typical urban street scene. We assume
that transitions in qualitative action generate interesting
activity. These transitions are detailed in Table 2. The facts
are therefore searched for evidence to support the particular
hypotheses which may explain the event sequence (which
have been generated in response to a predefined trigger
event). For example, the transition between the actions
walking-on-far-side-pavement and walking-on-road generates
an event “move-to-road”. Hypotheses for this particular
scenario are defined as follows.

(1) IF the event “move-to-road” is followed by event
“move-to-pavement” AND the current location is
not the same as the location triggering the first
event (i.e., the road is crossed) AND, subsequently,
a meeting takes place THEN the explanation is that,
“the agent crossed the road to meet the other agent”.

(2) IF a crossing of the road is observed NOT followed
by an interaction THEN the explanation is that the
agent crossed the road.

(3) IF a “move-to-road” event is triggered AND subse-
quently a “move-to-pavement” event but back to the
same pavement THEN no explanation is provided
UNLESS another agent was in the near vicinity
THEN the explanation is that it was necessary to
avoid collision.

The pseudocode for this scenario is shown in Algorithm 4
in the appendix. An illustrative schematic of the overall
reasoning process for answering this question is shown in
Figure 13. Similarly, we generate hypotheses to explain events
including “stopping”, “move-to-pavement” and “move-to-
driveway”. It is simple to change between domains by
updating the rule set. There is the additional advantage that
the rule set is general to all such urban scenes. The output
for two different situations is automatically generated and
exactly the same reasoning engine and events set may be
applied to each scene independently.

5. Experiments

Comprehensive data from two different urban scenes was
gathered and used to evaluate our method. We first describe
the datasets used and the training process, then discuss the
evaluation of the reasoning process.

5.1. Dataset 1. The first dataset is illustrated in Figure 18.
To obtain the data, two students were asked to act out a
set of twelve two- and one-person activities. The activity
was recorded using a standard home video camera from
the second floor of a domestic building in Oxford. No
instruction was given to the “actors”, other than a brief
outline of the activity. The two-person activities included

walking together, meeting, passing one another by. A set
of images containing these two-person activities was then
extracted for experimentation. This subset of the total dataset
comprises 6000 frames at 5 frames per second (fps). From
this, a hand-labelled corpus of 665 frames was generated by
the authors for training the low-level sensing component
of the system. The low-level spatiotemporal action classes
derived from these sequences are walking (away, towards,
left, and right), running (away, towards, left, and right), and
standing still. The people are tracked automatically and the
representative (training) action classes are labelled by hand.
The head-pose classes remain as described previously and
database exemplars of the head-pose under these imaging
conditions were extracted automatically and then given
a semantic label by hand. The positional locations are
defined as nearside pavement, far-side pavement, road, and
driveway.

5.2. Dataset 2. For the second scene shown in Figure 14
no actors were used. People are imaged in this dataset
performing normal activity such as crossing the road,
walking together on the pavement. This data was acquired
from the roof of the IEB building at Oxford University. A
total of 76,040 frames at 5 fps was recorded and a training set
of 4491 frames created corresponding to interesting activity
extracted from the overall data. The low-level action classes
are labelled as walking, running, and standing. Position
locations are defined as shown in the hand segmented
scene in Figure 14. The positional labels are, for example,
Northbound Lane (3), Right Turn Lane (4), Southbound
Lane (6), Parks Road Westbound (7), and so forth. These,
taken with the semantic labels of the actions determine
the human-readable output used to generate readable text
descriptions.

A database of action exemplars was collected from
training examples. Some of the training trajectories are
shown in Figure 15. Once more, the head-pose exemplars are
extracted from the dataset. The training phase and semantic
labelling for a new dataset such as this takes less than 30
minutes and was performed by one person—a researcher—
who is familiar with the area, hence the descriptive semantic
labels of positional areas.

5.3. Results

5.3.1. Event Recognition. As defined previously, an “event”
in the urban surveillance domain corresponds to a specified
change in spatiotemporal action which is computed from the
combination of location and action. In Dataset 1, 96.7% of
the time the Maximum Likelihood selected spatiotemporal
action is correct with reference to ground-truth labels. 100%
of the time the true model is in the distribution of all models
which were sampled from the database. This is measured
over 2391 frames. In Dataset 2, in 74% of the tests the ML
action was correctly chosen and 89.5% of the time the correct
model was in the distribution. This is a fair reflection of
the differing pixel resolution available to compute the action
descriptor. We tested over 18445 frames of data.
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5.3.2. Explanations of Events. The interpretation of the events
is dependent on the detection of lower-level events. The
explanatory hypotheses have already been discussed in some
detail in Section 4.3. Out of the data used in this paper we
identified the four events in Dataset 1 which are already listed
in Table 2. In Dataset 2 this set is augmented by a series
of single-person interactions with the environment. Given
the “real” nature of this particular dataset, the events are
somewhat uninteresting and correspond to road crossings
mainly.

Over both datasets, using the spatiotemporal actions and
gaze estimator as inputs to the higher-level rule set, we
find that the system derives a correct explanation on 79%
of the occasions in which a human observer identifies an
event has occurred. This is the mean recognition rate in
both sequences. Note that failure at the low-level sensing
stage has a critical impact on this statistic. As such, we
could not improve the mean 88% recognition rate of the
action/behaviour/gaze estimate. Meeting and ignoring events
are successfully recognised and examples of these events are
Figures 16 and 17. This enables the facts list to be updated
and for explanations to be generated. To validate the method
we focus on explanations of “crossing the road” events for
the reason that this event is common in both of our test
datasets. This enable us to reach a variety of explanations and
also to test the extensibility of the rule-based approach. The
results presented in Figures 18 and 19 show the success of
the technique. In Dataset 1 two different scenarios unfold
and both scenarios result in a plausible human-readable
explanation of the activity. In the first case the “meeting” is
given as the reason for the event, in the second, “avoid” is
given (see Figure 18).

The result drawn from Dataset 2 shows how the rea-
soning process may be extended. In this case there is no
other person and so a new explanation is posited: that of
“crossing road”. The rules are augmented for the example
in Figure 19 with knowledge that the road may legitimately
be crossed at the pedestrian crossing, that is, despite there
being no evidence for a meeting, crossing at the lights is a
plausible reason for the observed behaviour. The accuracy
of the method is demonstrated here also by the running
commentary generated in Figure 19.

5.3.3. Failure Modes. The role of learning in a causal
reasoning system is significant. We recognise that failure of
any current implementation for a given scenario is either
(a) an opportunity to learn, or (b) an opportunity to
identify unusual/inexplicable behaviour. The latter may be
used to prompt a surveillance analyst. Otherwise, when no
conclusion can be reached, the user can be prompted to
update the rule set to encompass the scenario encountered.
An example of an inexplicable event for the system presented
in this paper is shown in Figure 20, where a person is
observed to walk on one pavement, the road, and then return
to the same pavement. Given the rule set defined in the
appendix, no explanation can be derived. It can be seen that
this behaviour is genuinely inexplicable. However, were a
car driving along the road, an appropriate rule fix might

(1) load facts
(2) proximityThreshold = 100
(3) timeThreshold = 100
(4) for all frames do
(5) distance = (P1 position) − (P2 position)
(6) if distance ≤ proximityThreshold then
(7) if p1action = p2action & P1 visible & P2 visible

then
(8) together = 1
(9) increment = increment + 1
(10) end if
(11) end if
(12) if increment ≥ timeThresh then
(13) situation = “together”
(14) else
(15) situation = “not together”
(16) end if
(17) update facts
(18) end for

Algorithm 2: Proximity rule.

(1) load facts
(2) meetingThresh = 50
(3) j=lastFrameIndex
(4) for i = 1 to j do
(5) if situation(i) = situation(i− 1) then
(6) if situation(i) = “together” then
(7) togetherInc = togetherInc + 1
(8) else
(9) togetherInc = 0
(10) end if
(11) end if
(12) if togetherInc ≥ meetingThresh then
(13) scenario = “meeting”
(14) else if togetherInc <meetingThresh & togetherInc > 0

Then
(15) scenario = “potential meeting”
(16) else
(17) scenario = “not meeting”
(18) end if
(19) update facts
(20) end for

Algorithm 3: Meeting rule.

include knowledge of a pedestrian’s desire to avoid traffic.
This augmentation of the rule set would result in a plausible
interpretation of activity.

6. Conclusion

In contrast to the previously studied problem of reasoning
about static scenes with very simple visual features, this
work has developed a new system for explaining interactions
between people in complex, dynamic scenes. This has been
made by possible by our recent work in the area of action



18 EURASIP Journal on Image and Video Processing

(1) load facts
(2) if event=“meeting” then
(3) for j = 1 to lastFrame do
(4) if scenario = “meeting” then
(5) currentAction = facts·positionLabel( j)
(6) explanation = “Person” event “to meet on”

currentAction
(7) end if
(8) end for
(9) for j = 1 to lastFrame do
(10) if scenario = “ignore” then
(11) currentAction = facts·positionLabel( j)
(12) explanation = “Person” event “to avoid other

Person on” currentAction
(13) end if
(14) end for
(15) end if

Algorithm 4: Move-to-road rule.

recognition, the results of which we have exploited to enable
a software “agent” to sense its environment. Using known
rules about how agents interact, we created a general method
for reasoning about causal interactions between people.
The generality of the method is clearly demonstrated by
the results from two very different applications. The most
pressing area for future work is to implement a fully Bayesian
reasoning system.

Appendix

See Algorithms 2, 3, and 4.
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