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Abstract
Vitamin D deficiency has been implicated in the pathogenesis of several pregnancy compli-

cations attributed to impaired or abnormal placental function, but there are few clues indicat-

ing the mechanistic role of vitamin D in their pathogenesis. To further understand the role

of vitamin D receptor (VDR)-mediated activity in placental function, we used heterozygous

Vdr ablated C57Bl6 mice to assess fetal growth, morphological parameters and global

gene expression in Vdr null placentae. Twelve Vdr+/- dams were mated at 10–12 weeks of

age with Vdr+/- males. At day 18.5 of the 19.5 day gestation in our colony, females were

euthanised and placental and fetal samples were collected, weighed and subsequently

genotyped as either Vdr+/+, Vdr+/- or Vdr-/-. Morphological assessment of placentae using

immunohistochemistry was performed and RNA was extracted and subject to microarray

analysis. This revealed 25 genes that were significantly differentially expressed between

Vdr+/+ and Vdr-/- placentae. The greatest difference was a 6.47-fold change in expression

of Cyp24a1 which was significantly lower in the Vdr-/- placentae (P<0.01). Other differen-

tially expressed genes in Vdr-/- placentae included those involved in RNA modification

(Snord123), autophagy (Atg4b), cytoskeletal modification (Shroom4), cell signalling
(Plscr1, Pex5) and mammalian target of rapamycin (mTOR) signalling (Deptor and Prr5).
Interrogation of the upstream sequence of differentially expressed genes identified that

many contain putative vitamin D receptor elements (VDREs). Despite the gene expression

differences, this did not contribute to any differences in overall placental morphology, nor

was function affected as there was no difference in fetal growth as determined by fetal

weight near term. Given our dams still expressed a functional VDR gene, our results sug-

gest that cross-talk between the maternal decidua and the placenta, as well as maternal
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vitamin D status, may be more important in determining pregnancy outcome than conceptus

expression of VDR.

Introduction
Normal fetal development is undoubtedly underpinned by normal placental function. The
placental vascular network provides an interface between the fetus and mother for the ex-
change of gases, nutrients and wastes [1]. Additionally, the placenta acts as an endocrine organ
responsible for the production of numerous hormones which maintain pregnancy and orches-
trate maternal adaptation to pregnancy [2]. Maternal nutrient status underlies the availability
of nutrients being transferred to the fetus to support optimal growth. Placental research is
increasingly focused on how the organ adapts to support adequate fetal growth in a potentially
sub-optimal nutrient available environment [3].

The prevalence of vitamin D deficiency and insufficiency in pregnant women is increasing
worldwide [4, 5] and accumulating evidence associates vitamin D deficiency with a range of
pregnancy complications including preeclampsia [6, 7], gestational diabetes mellitus [8] and
preterm birth [9]. Additionally, maternal vitamin D deficiency increases the chance of deliver-
ing a baby who is small for gestational age [10, 11] and has also been linked to the development
of asthma [12], autism [13], and reduced bone mineral accrual [14, 15] in the offspring. During
human pregnancies, serum levels of the active form of vitamin D3 (1,25(OH)2D3) increase by 2
to 5-fold [16–18] suggesting an important role for vitamin D in supporting the pregnancy and
fetal development. While vitamin D supplementation has been reported to help neonatal out-
comes [19], the lack of high quality intervention data to confirm a causal role for vitamin D in
pregnancy outcomes [20] and a description of the underlying mechanisms are lacking.

While the secosteroid hormone, 1,25(OH)2D3, is widely associated with calcium and phos-
phate homeostasis [21], other functions for 1,25(OH)2D3 activity have been identified such as
in modulation of immune [22] and vascular [23] function, brain [24] and muscle [25] develop-
ment, and bone remodelling [26–28]. In general, the actions of 1,25(OH)2D3, are broadly asso-
ciated with regulating cell proliferation and differentiation [29, 30]. The effects of 1,25(OH)2D3

are mediated through the vitamin D receptor (VDR), a predominantly nuclear receptor,
expressed in numerous tissues including the placenta [31, 32]. The liganded VDR, together
with retinoid X receptor (RXR) in a dimer complex, binds to genomic vitamin D responsive
elements (VDREs), located primarily in upstream flanking regions of genes, and recruit a cell-
specific transcription factor complex which regulates the expression of numerous genes [33,
34]. Local synthesis and metabolism of 1,25(OH)2D3 within the placenta is likely to occur
given that placental cells expresses both CYP27B1, which encodes the enzyme to produce 1,25
(OH)2D3, and CYP24A1, which encodes for enzyme responsible for the catabolism of 1,25
(OH)2D3 [35].

Although vitamin D activity in the decidua is suggested to regulate immune tolerance dur-
ing pregnancy [22], the evidence that supports the link between VDR expression, placental
growth, function and fetal outcome is lacking. Previously, Vdr knockout (Vdr-/-) dams have
been shown to exhibit both a reduction in the rate of conception and reduced fetal weights
when compared to heterozygous (Vdr+/-) dams [36]. However, such studies are unable to dis-
cern whether the ablation of Vdr in the placenta contributes to these outcomes. Studies on vita-
min D and placental function are limited and have focused on immune function within the
maternal decidua of Vdr knockout mice [37] or on placental morphometry in dietary vitamin
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D restricted animals [38]. Thus, we used heterozygous matings of Vdr knockout mice to inves-
tigate the effects of Vdr ablation specifically in the conceptus by characterising placental mor-
phology, fetal growth and global placental gene expression measures near term. The study
design specifically excluded confounding effects of perturbed Vdr signalling in the mother to
elucidate placenta specific effects. We chose late gestation as a first step in elucidating the role
of vitamin D signalling in placental structural and functional development as this corresponds
most closely to the time at which placentas could be sampled from women.

Methods

Animals
Ethics approval was obtained from both the SA Pathology/Central Northern Adelaide Health
Service Animal Ethics Committee and the University of Adelaide Animal Ethics Committees
with all animal work complying with the Australian Code of Practice for the Care and Use of
Animals. Global Vdr ablated C57Bl6 mice (strain B6.129S4-VDRtm1Mbd/J, Jackson Labora-
tory JAX Mice Services) were generated as previously described [39]. At weaning, 12 virgin
Vdr+/- females were fed a standard rodent diet containing 0.8% calcium and 0.7% phosphorus
(Specialty Feeds), water ad libitum and were maintained on a 12:12 light-dark cycle. Females at
10–12 weeks of age were mated with a Vdr+/- male to generate offspring of all three genotypes
(Vdr-/-, Vdr+/-, Vdr+/+). The day of copulatory plug detection was designated day 0.5 of preg-
nancy. On day 18.5 of the 19.5 day pregnancy in our colony, females were anaesthetised with
an intraperitoneal injection of Avertin (20 mg/mL) to collect blood and then killed via cervical
dislocation. Fetuses and placentae were collected and weighed. The placentae were bisected
mid-sagittally with half stored RNAlater and subsequently at -80°C for gene expression analy-
ses, while the remaining half was fixed for histological analyses.

Genotyping
To determine Vdr genotype and fetal sex, DNA was extracted from fetal tails using the
salting-out procedure detailed in [40]. Following DNA quantification, samples were diluted
to 20 ng/μL in TE buffer and used in PCR for Vdr genotyping (Table A in S1 File) [41] or
Sry detection (Table B in S1 File) [42], respectively. Final PCR reactions were performed on
10 ng/μL of DNA in a 20 μL reaction containing 10 μL SsoFast EvaGreen Supermix (BioRad)
and 10 μM Vdr primers or 200 nM Sry primers. Outcomes of the PCR were validated using gel
electrophoresis on a 2% and 2.7% agarose gel for Vdr and Sry, respectively (Fig A in S1 File).

Placental histology
Histological analyses were performed on all placentae from Vdr+/- dams to capture all geno-
types. Bisected placentae were washed twice in PBS over 2 hours to remove RNAlater then
fixed in 10% neutral buffered formalin (Australian Biostain). Samples were subsequently
washed in three changes of PBS and stored in 70% ethanol prior to paraffin embedding. 5 μm
thickness full-face sections were stained with Masson’s Trichrome following standard proto-
cols in order to determine mid sagittal labyrinth and junctional zone cross sectional areas or
subjected to immunohistochemistry (IHC) as previously described [43].

Fetal capillaries and trophoblast cells in the placental labyrinth were identified by double-
label IHC with anti-vimentin (#M7020, Dako, Agilent Technologies; 1/5 dilution) and anti-
cytokeratin antibodies (#MAB3412, Merck Millipore; 1/100 dilution), respectively [43]. Briefly,
antigen retrieval was performed with 0.3 mg/mL Pronase (P8811, Sigma-Aldrich) in PBS, with
a Mouse-on-Mouse IHC kit (Abcam) used to prevent non-specific binding. Chromogen
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diaminobenzidine (DAB, Sigma Aldrich) was used to form a brown precipitate for anti-cyto-
keratin labelling and with 2% nickel II sulphate (Sigma Aldrich) to form a black precipitate for
anti-vimentin labelling. Sections were counterstained with haematoxylin and eosin (Sigma
Aldrich).

Immunohistochemically labelled slides were analysed by point counting ten fields per pla-
centa to estimate volume densities and volumes of fetal capillaries, trophoblasts and maternal
blood space and intercept counting to estimate the surface density and thickness of trophoblast
for exchange, previously described in [43]. The coefficient of variation was<5%.

RNA extraction, microarray preparation and qPCR
Placental tissue was homogenised using a Powerlyzer with ceramic 1.4 mm beads (Mo Bio Lab-
oratories, Inc) before total RNA was extracted using Trizol (Invitrogen) following the manufac-
turer’s instructions. RNA integrity was determined using the Experion (BioRad) system.

For microarray, eight Vdr+/+ and eight Vdr-/- placentae from six heterozygous dams were
analysed. Biotinylated cRNA was prepared according to the standard Affymetrix protocol from
250 ng total RNA following the Manual Target Preparation Guidelines for GeneChip Whole
Transcript (WT) Expression Arrays. RNA with RQI> 9 was sent to the Ramaciotti Centre for
Genomics, Sydney, Australia, where 3.5 μg of fragmented and labelled single-stranded cRNA
was hybridised on Affymetrix MoGene 2.1 ST arrays and washed and stained following the
Manual Target Preparation Guidelines for GeneChip Whole Transcript (WT) Expression
Arrays. Arrays were scanned using the Affymetrix GeneChip scanner.

For microarray validation, extracted RNA from 17 Vdr+/+ and 16 Vdr-/- placentae was
DNase treated using TURBO DNA-free (Ambion) as per the manufacturer’s instructions. PCR
and subsequent agarose gel confirmed the absence of genomic DNA (Table C in S1 File). 500
ng of each sample was then reverse transcribed using the iScript cDNA Synthesis Kit (Bio-
Rad). Each cDNA sample was diluted 1:20 before performing quantitative PCR (qPCR) in trip-
licate by real time PCR using TaqMan Gene Expression assays (Table D in S1 File). All qPCR
gene expression data were normalised to Hbms.

Microarray differential expression
Affymetrix Mouse Gene 2.1 ST array data were pre-processed, background subtracted and
quantile normalised using the RMAmethod in the Oligo package. Array probes were annotated
using the Bioconductor Affymetrix mogene21 annotation data package, with all unannotated
probes subsequently removed from the dataset. Testing for differential expression between
groups was performed using linear models and Empirical Bayes methods, with contrasts
between groups incorporating the mother as a blocking factor using the Limma package [44].
All P-values were corrected for multiple testing by calculating the false discovery rate (FDR).
Microarray data have been deposited to NCBI GEO under accession GSE61583 and analysis
code is included with the S2 File. Data analyses were performed in R version 3.1.1.

VDRE enrichment analysis
The top up- and down-regulated genes between Vdr-/- and Vdr+/+ placentae as determined in
the microarray (>1.5 fold-change, p< 0.01) were analysed for presence of putative vitamin D
responsive elements (VDRE’s) that potentially bind the RXRA::VDR transcription factor com-
plex using oPOSSUM and the JASPAR vertebrate core profile for RXRA::VDR (MA0074.1)
[45, 46]. For each gene, we searched for RXRA::VDR motifs in the 10 kb upstream and down-
stream sequences from the transcription start site using a conservation cut-off of 0.4, a matrix
score threshold of 75% and a minimum specificity of 8-bits.
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Statistics
To test for morphological differences between Vdr genotypes, weighted mixed-effects linear
models were fitted to the data and included fetal sex as a covariate and were weighted by litter
size using the lme function in the nlme package in R v3.1.1. Gene expression differences were
assessed by the Mann-Whitney test to calculate exact P-values. Results are reported as mean
normalised expression ± standard error.

Results
To examine the role of Vdr signaling in the placenta and the effects on fetal and placental
growth and development, Vdr+/- females were mated with Vdr+/- males and sacrificed on day
18.5 of pregnancy. A standard Mendelian 1:2:1 ratio distribution of genotypes for Vdr was
observed when accounting for and excluding resorptions. Of the 12 pregnancies, 77 fetuses
were collected and analysed, with Sry genotyping revealing 45 female and 32 male fetuses
(Table 1).

The effects of VDR depletion on fetal and placental parameters
The effect of Vdr ablation on fetal and placental measures was assessed initially by analyzing
fetal and placental weights in 17 Vdr+/+, 54 Vdr+/- and 21 Vdr-/- conceptuses, with no signifi-
cant differences detected across the genotypes (Fig 1 shows data for 8 Vdr+/+ verses 8 Vdr-/-

conceptuses for which microarray analyses were undertaken). Placental structure, examined
firstly by Masson’s trichrome staining, revealed no significant differences in morphology
between Vdr-/- and Vdr+/+ genotypes. These morphology measures included total mid sagittal
cross sectional area, junctional zone and labyrinth zone areas and the proportion of junctional
zone to labyrinth zone. In mice, the placental labyrinth is the area in which physiological
exchange of nutrients and waste products occurs between fetal and maternal bloodstreams,
whereas the junctional zone contains placental stem cells and is involved in hormone produc-
tion. A larger labyrinth or a higher labyrinth to junctional zone ratio suggests enhanced placen-
tal efficiency. Given there were no differences in the proportions of junctional and labyrinth
zones, this suggests similar placental efficiency, which corresponds to the similar fetal weights
across genotypes (Fig 1).

Further quantification of labyrinth zone structure using double-labelled IHC showed no sig-
nificant differences between genotypes for volume densities or volumes of trophoblasts, fetal

Table 1. Pregnancy characteristics of Vdr+/- dams at gestational day 18.5. Data expressed as mean ± SEM.

Parameter Vdr+/- (n = 12)

Percentage conceived 100%

Weight gain during pregnancy (g) 18.13 ± 3.64

% Maternal weight gain during pregnancy 89.15 ± 19.89

Viable litter size 6.58 ± 0.54

Number reabsorptions 1.17 ± 0.32

Average Fetal Weight (g) 1.13 ± 0.016

Placental weight (g) 0.78 ± 0.074

Male (n = 34) Female (n = 45) P-value

Fetal weight 1.16 ± 0.035 1.10 ± 0.019 0.008

Placental weight 0.12 ± 0.0029 0.11 ± 0.0033 0.255

doi:10.1371/journal.pone.0131287.t001
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capillaries and maternal blood space, as well as surface density of trophoblast. Our data suggest
feto-placental Vdr ablation does not affect placental composition nor functional capacity.

Fig 1. Comparison of mouse placental morphology measurements between Vdr-/- and Vdr+/+

genotypes at day 18.5pc.No significant differences were observed in any of the morphology parameters
assessed between the two genotypes (P>0.05) in the 8 Vdr+/+ and 8 Vdr-/- placentas analysed by microarray.
Horizontal line on each plot represents mean. MBS: maternal blood space; VD: volume density.

doi:10.1371/journal.pone.0131287.g001
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Altogether, analyses of fetal and placental parameters clearly indicated that there were no
gross morphological differences that may underpin phenotypic changes such as hypocalcemia,
hyperparathyroidism and rickets experienced by Vdr-/- pups from weaning [39, 47]. Such
changes may however be modulated by placental or fetal gene expression differences.

The effect of VDR ablation on the placental transcriptome
To test for the effect of Vdr ablation on gene expression in the placenta, transcriptome profiles
of eight placentae per genotype were assessed by microarray. Twenty-five genes were detected
as being differentially expressed between Vdr-/- and Vdr+/+ placentae with an absolute fold
change>1.3 and a false discovery rate (FDR)<0.05 (Table 2). The greatest difference was a
6.47-fold change (FDR = 0.0012) in the expression of Cyp24a1, which was lower in the Vdr-/-

placentae. As Cyp24a1 is directly upregulated through Vdr as part of the vitamin D metabolic
pathway, severely reduced placental Cyp24a1 expression in Vdr-/- placentae would be expected.
Other genes that were differentially expressed included genes involved in RNA modification
(Snord123), autophagy (Atg4b), cytoskeletal modification (Shroom4), cell signaling (Plscr1,
Pex5, Rgs17), and mammalian target of rapamycin (mTOR) signaling (Deptor, Prr5). Of these
differentially expressed genes, 12 were more highly expressed in Vdr-/- placentae and 13 had
lower expression levels when compared to Vdr+/+ placentae. No significant differences in gene
expression between the sexes within each genotype were detected (data not shown).

Table 2. Genes differentially expressed between Vdr-/- and Vdr+/+ placentae.

Microarray qPCR

Gene Fold change Vdr-/- Expression P-value FDR Fold change Vdr-/- Expression P-value

Cyp24a1 6.47 # 5.0E-08 0.001 95.27 # <0.001

Snord123 1.58 # 4.3E-06 0.027 - - -

Atg4b 1.33 " 4.5E-06 0.027 - - -

Snora28 1.49 # 5.5E-06 0.027 - - -

Snora69 1.75 # 8.4E-06 0.03 - - -

Mmp28 1.54 " 8.5E-06 0.03 - - -

Plscr1 1.47 # 1.2E-05 0.035 1.59 # 0.017

Deptor 1.54 # 1.3E-05 0.035 1.37 # 0.029

Ep400 1.78 # 1.4E-05 0.035 - - -

Shroom4 1.41 " 1.7E-05 0.037 - - -

Anp32a 1.40 # 1.83E-05 0.037 - - -

Col16a1 1.37 # 1.95E-05 0.037 - - -

D5Ertd579e 1.57 " 2.32E-05 0.039 - - -

Pex5 1.31 " 2.35E-05 0.039 - - -

A730036I17R 1.54 " 2.60E-05 0.039 - - -

Ms4a4d 2.01 # 2.70E-05 0.039 - - -

Prr5 1.36 " 2.88E-05 0.039 - - -

Sdk2 1.35 " 3.52E-05 0.040 - - -

Raldgs 1.33 " 5.42E-05 0.049 - - -

Tinf2 1.33 " 5.52E-05 0.049 - - -

Mir877 1.76 " 5.90E-05 0.050 - - -

Mgp 2.75 # 6.31E-05 0.050 - - -

Cd302 1.43 # 6.70E-05 0.050 - - -

Snora15 1.50 # 6.77E-05 0.050 - - -

Fam69a 1.42 " 6.81E-05 0.050 - - -

doi:10.1371/journal.pone.0131287.t002
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Although only 25 genes were classed as statistically different between Vdr-/- and Vdr+/+

groups, unsupervised clustering analysis of the top 50 differentially expressed genes grouped
samples together by genotype, and inspection of the standardised z-scores revealed distinct pat-
terns in gene expression between the groups with unknown subsequent effects in offspring
(Fig 2A).

Microarray validation by qPCR
Independent validation of the microarray results on 17 Vdr+/+ and 16 Vdr-/- placentae was per-
formed by qPCR and included additional biological replicates. Vdr expression was virtually

Fig 2. Differential gene expression between Vdr-/- and Vdr+/+ placentae as determined bymicroarray
analysis. (A) Expression differences of the top 50 differentially expressed genes in the placenta between
Vdr-/- and Vdr+/+ mice represented in a heatmap of z-scores. Columns represent each sample and rows
represent genes. The dendrogram above the heat map shows samples cluster into genotype groups. (B)
Normalised Vdr expression for each sample shown on dot plot below heat map. Orange points represent
Vdr-/- samples, Blue points represent Vdr+/+ samples.

doi:10.1371/journal.pone.0131287.g002
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undetectable in Vdr-/- placentae by both microarray (Fig 2B) and qPCR (Fig 3). Validation by
qPCR of the microarray findings eliminates the possibility of significant transcript contamina-
tion from the heterozygous maternal tissues, as the wild type allele was not detected. Therefore,
it is likely that the Vdr background levels of expression in the microarray data is the result of
non-specific cDNA binding with the Vdr probes. Further expression analysis of Cyp24a1, Dep-
tor and Plscr1 by qPCR correlated with results obtained by microarray and showed that even
changes<1.5 fold, such as with Plscr1, were replicable (Table 2 and Fig 3).

VDRE enrichment analysis
To assess if differential expression between Vdr+/+ and Vdr-/- placentae was potentially driven
by the VDR-RXR transcription factor complex, we searched for the presence of VDR-RXR
transcription factor motifs in the 10kb up and down-stream of the transcription start sites of
differentially expressed genes. These analyses revealed that genes that were more highly in
Vdr+/+ placentae feature more VDR binding motifs in the regions upstream of transcriptional
start sites (Fig 4A), with many of these genes having more than one site per gene (Fig 4B).
Expression of Vdr was also positively correlated with the expression of genes with upstream
VDRE’s such as Cyp24a1 (R2 = 0.56, P = 2.7e-05) and Deptor (R2 = 0.41, P = 7e-04) (Fig 5).

Fig 3. Validation of microarray differential expression by quantitative PCR. Significantly lower
expression (P<0.05) of Deptor, Plscr1, Cyp24a1 and Vdr was observed n Vdr-/- (n = 16) placentae compared
to Vdr+/+ (n = 17) placentae. Gene expression was normalised to Hbms, horizontal line represents mean.

doi:10.1371/journal.pone.0131287.g003
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Fig 4. VDRE enrichment analysis of diffterentially expressed genes between Vdr-/- and Vdr+/+

placentae. (A) Density of predicted VDR transcription factor binding sites in the sequence flanking
transcription start sites (TSS) of genes differentially expressed between Vdr-/- and Vdr+/+ samples. Blue curve
represents genes more highly expressed in Vdr+/+ samples, orange curve represents genes more highly
expressed in Vdr-/- samples. We have used kernel density estimation to model the distribution of VDR
transcription factor binding sites. (B) Number of predicted VDR binding sites per gene for genes expressed
more highly in Vdr+/+ placentae (blue bars) and those more highly expressed in Vdr-/- placentae (orange
bars).

doi:10.1371/journal.pone.0131287.g004
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Discussion
Although maternal vitamin D deficiency has been implicated in the pathogenesis of several
pregnancy complications attributed to impaired or abnormal placental function, there are few
clues indicating the mechanistic role(s) of vitamin D in their pathogenesis. Preeclampsia, pre-
term birth and intrauterine growth restriction have been associated with impaired placental
trophoblast invasion, and remodelling, of the uterine vasculature. Vitamin D metabolites have
recently been shown to enhance trophoblast invasion in vitro [48] and together with the pres-
ence of a local placental vitamin D metabolic pathway [22] suggest a direct role for vitamin D
in the placenta. To further understand how vitamin D may influence placental development,
and thereby pregnancy outcome, we used a Vdr gene ablated mouse model with heterozygous
matings to assess placental morphological parameters and global gene expression near term
without confounding by the absence of maternal vitamin D signalling. Despite analyzing multi-
ple aspects of placental morphology including total cell volume densities, the proportion of lab-
yrinth to junctional zones, trophoblast, fetal capillary and maternal blood space volume
densities and volumes and total surface area of trophoblast cells for exchange, no differences
were observed between knockout and wild type placentae. Nor were there any observed differ-
ences in fetal and placental weights indicating apparently normal function. Previous reports
have found that VDR-mediated signaling in the placenta is not required for the transport of
calcium to the fetus or for fetal bone mineralization in offspring born to Vdr+/- dams [36]. Con-
sistent with these findings, we found no apparent phenotype in the Vdr-/- fetus or placenta
when gestated in a heterozygous mother with adequate dietary vitamin D and calcium. In con-
trast, vitamin D-deficient dams carried pregnancies with smaller placentae are and reduced
fetal capillary diameter [38]. Thus, the effects of maternal vitamin D deficiency on placental
structure are likely mediated through the decidua rather than directly via VDR signaling in the
placenta.

In profiling placental transcriptomes by microarray, we detected 25 differentially expressed
genes between Vdr-/- and Vdr+/+ placentae, a number of which have been shown to be
expressed in the human placenta (Tinf2 [49], Rgsl7 [50], Plscr1 [51] Cd302 [52]). The greatest
gene expression difference observed between Vdr-/- and Vdr+/+ placentae was for Cyp24a1
(Table 2), a gene that directly interacts with VDR in the canonical vitamin D signaling pathway

Fig 5. Correlations between Vdr expression withCyp24a1 andDeptor expression. Positive correlations of Vdr expression with Cyp24a1 and Deptor
expression in the placentae of Vdr-/-, Vdr+/- and Vdr+/+ mice. Individual samples are represented by colored points, black line represents linear model fit.

doi:10.1371/journal.pone.0131287.g005
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and plays a key role in the vitamin D endocrine system negative feedback loop [53]. Our results
show that expression of Vdr and Cyp24a1 are positively correlated (Fig 4). Cyp24a1 expression
is typically induced directly by 1,25(OH)2D3 via a VDR-mediated transcriptional response
[54], therefore significant reduction in Cyp24a1 expression in Vdr-/- placentae was expected,
and suggests a functional role for VDR in the placenta.

Expression of both Pex5 (which encodes the peroxisome-targeting signal 1 receptor) and
Tinf2 [which encodes the TERF1-interacting nuclear factor 2 (Tin2)] was greater in Vdr-/- pla-
centae when compared to Vdr+/+. Pex5 plays a central role in the function of peroxisomes
which are present in cells to clear reactive oxygen species (ROS) like hydrogen peroxide [55].
Tin2 is a component of the shelterin telomere protection complex which acts to protect telo-
meres from DNA damage [56] potentially caused by ROS. Increased expression of both genes
within Vdr-/- placentae may be indicative of increased ROS, therefore increased oxidative
stress, which has been hypothesized to be an underlying factor in the development of preg-
nancy complications like preeclampsia [57]. However, further work is required in order to
establish whether there is an over-production of oxidative species within Vdr-/- placentae.

Of particular interest, we observed lower Deptor expression in Vdr-/- placentae and higher
expression of Prr5 when compared to Vdr+/+. Both genes are components of the mTOR signal-
ing pathway. During pregnancy, placental mTOR signaling plays an important role in the regu-
lation of fetal growth, particularly as a maternal nutrient and growth factor sensor [58].
Furthermore, both DEPTOR and PRR5 have been shown to be highly expressed within the pla-
centa [59, 60]. Deptor is an inhibitor of the mTOR signaling pathway [61] and by directly bind-
ing to mTORC1 and mTORC2 it acts to inhibit cell proliferation and protein synthesis.
Alternately, Prr5 is a component of the mTORC2 complex that promotes cell growth through
its interaction with Rictor [62]. It has been hypothesized that 1,25(OH)2D, through VDR sig-
naling, can suppress downstream mTOR signaling [63]. In Vdr-/- placentae decreased Deptor
and increased Prr5 indicates activation of the mTOR pathway. Thus, mTOR activation may
explain why there was no difference in fetal weight and placental structure as there would be a
drive for growth which may normalize any differences between the genotypes (Fig 1).

Our results indicate that VDR signaling in the placenta is not essential for pregnancy suc-
cess. This is supported by recent studies assessing placental VDR expression and polymor-
phisms in complicated pregnancies. VDR polymorphisms do not appear to predispose women
to preeclampsia and gestational hypertension [64] and VDR expression is similar between nor-
mal placentae and those from pregnancies complicated by gestational diabetes [65]. Further-
more, there is no linear correlation between placental VDR protein expression and birth
weight [66]. Cho et al. did, however, observe that 85% of women suffering gestational diabetes
were classified as vitamin D deficient (25(OH)D serum level ˂20 ng/mL)[65]. Maternal vitamin
D deficiency has been associated with pregnancy complications such as preeclampsia, small for
gestational age and preterm birth [67] suggesting important roles for vitamin D in maternal
tissues.

In this study, we used Vdr+/- dams to assess the effect of vitamin D on placental and fetal
development without the confounding factor of poor maternal health seen in Vdr-/- mice [39].
Despite gene expression differences between knockout and wild-type placentae, this did not
translate to differences in placental morphology and function with no apparent differences in
fetal outcome near term. Our results suggest that maternal vitamin D status may be more cru-
cial in determining pregnancy outcome than VDR signaling in the conceptus alone. This may
be due to the presence of non-genomic VDR signaling which has been largely ignored in many
studies, as well as genomic signaling in maternal tissues including the decidua. We suggest
experiments using homozygous knockout dams will need to be undertaken in order to fully
investigate the potential cross-talk between the maternal decidua and the placenta in regards to
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VDR signaling. Furthermore, the gene expression differences observed in this study suggest
some genes harbour VDRE’s in the placenta (Fig 1B and 1C) highlighting the need for further
work to elucidate the role of the vitamin D endocrine pathway in placental function.
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