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Towards a scientific interpretation of the
terroir concept: plasticity of the grape berry
metabolome
Andrea Anesi1,4†, Matteo Stocchero2†, Silvia Dal Santo1†, Mauro Commisso1, Sara Zenoni1, Stefania Ceoldo1,
Giovanni Battista Tornielli1, Tracey E. Siebert3, Markus Herderich3, Mario Pezzotti1 and Flavia Guzzo1*

Abstract

Background: The definition of the terroir concept is one of the most debated issues in oenology and viticulture.
The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed
viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing
interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we
characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in
seven different vineyards, located in three macrozones, over a 3-year trial period.

Results: To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to
identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different
vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome
which are more plastic and therefore respond differently to terroir diversity. We observed some relationships
between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the
terroir concept.

Conclusions: Our experiments with a single Corvina clone in different vineyards have revealed the existence of a
clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows
each vineyard to be characterized by the unique profile of specific metabolites.

Background
Wine is a complex mixture of metabolites derived from
grape berries, yeasts and bacteria during fermentation,
and for barrel-aged wine, also the oak and other woods
used for cask making [1]. The chemical reactions that
occur during vinification can further transform grape and
yeast metabolites, and the ageing process increases this
complexity. Because grapes provide the basis for many
wine aromas, flavors and colors, there is much interest in
factors affecting the composition of ripe berries [1–3].
The metabolites found in grapes fall into two main

groups: volatile and non-volatile compounds, present
mainly in the berry skin and flesh. Volatile organic

compounds (VOCs) are low-molecular-weight alde-
hydes, ketones, alcohols, esters, lactones, terpenes,
norisoprenoids, methoxypyrazines and thiols (usually
less than 300 Da), which vaporize rapidly at room
temperature. Non-volatile compounds include a di-
verse range of primary and secondary metabolites.
Sugars (mainly glucose and fructose), organic acids
(predominantly tartaric and malic acid) and amino
acids (mostly proline and arginine) are the important
primary metabolites, mainly present in the berry flesh.
Most of the secondary metabolites are phenylpropanoids,
e.g., anthocyanins, flavonoids, phenolic acids, flavan-3-ols,
procyanidins, polymeric tannins, stilbenes and viniferins,
which are typically found predominantly in the berry skin.
All these compounds have been widely studied because
they affect wine quality and are thought to be beneficial
for human health [3–7].
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In oenology, the environmental factors that characterize
a specific vineyard and impact grape and wine quality
are known as terroir. Seguin [8] defined terroir as an
interactive ecosystem, in a given place, including cli-
mate, soil and the vine (cultivar and rootstock). In a
non-scientific context, the concept of terroir implies
that a wine produced in a given region is unique and
cannot be reproduced elsewhere even if the grape and
winemaking techniques are painstakingly duplicated.
The importance of terroir on grape and wine quality
is the subject of debate, particularly because of its com-
mercial and marketing relevance.
In terms of biology, terroir is reflected in the differ-

ences in fruit composition caused by growing the vine in
a different environment, given that the accumulation of
berry metabolites is influenced by communication be-
tween the vine and its biotic and abiotic surroundings.
Determining the objective impact of a specific terroir is
challenging because many factors and their interactions
may be involved, including climate, soil, topography,
vineyard characteristics, cultivar, vine water status, root-
stock and viticultural practices. Previous investigations
have focused on single environmental factors such as
specific forms of abiotic stress, and have identified posi-
tive correlations with the expression of certain genes
and the abundance of specific metabolites [9–11].
Recently, the metabolomics approaches have been suc-

cessfully used to discriminate Pinot noir grapes (and
related wines) from two different but close vineyards,
referred as terroirs, managed by the same vine grower, to
reduce the impact of the human intervention [12, 13].
Here we used an opposite approach to characterize the
terroir effect on berry composition, given that human
intervention is considered one of the components of ter-
roir. On the other side, we removed as much complexity
as possible by working not only on a single cultivar but
also on a single clone, thus eliminating much possible
variability due to genetic background. This aspect has
been overlooked in previous studies of the terroir concept,
even though clonal selection is widely practiced in viticul-
ture, suggesting that somatic modification has a significant
effect on berry and wine quality.
We used an untargeted metabolomics approach

based on liquid chromatography–mass spectrometry
(LC-MS) and gas chromatography–mass spectrometry
(GC-MS) to investigate the effects of terroir on a sin-
gle clone of Vitis vinifera cv. Corvina (clone 48) in
seven different vineyards managed by distinct vine
growers and located in three different macrozones,
over a 3-year trial period. We previously used the same ex-
perimental conditions to define the plasticity of the
grapevine berry transcriptome, revealing that 5 % of
the Corvina transcriptome is used for terroir-specific
adaptation [14]. We found that the phenylpropanoid

pathway, especially resveratrol biosynthesis, was one of
the most environmentally-dependent metabolic compo-
nents, with a good correlation between metabolite levels
and the induction of gene expression [14].
Here, we anticipated a strong vintage-specific effect on

the berry metabolome and therefore developed statistical
tools to overcome this effect, allowing us to explore the
metabolomic and transcriptomic data in detail. Even
when the vintage effect was dominant, the three macro-
zones showed distinct terroir-specific signatures in fruit
composition, and berries from each individual vineyard
within the macrozone were characterized by specific
chemical traits. We conclude that different components
of the metabolome and transcriptome can respond to
unique interactions of factors within each terroir.

Methods
Plant material
Vitis vinifera cv. Corvina clone 48 berries were sampled
during the 2006, 2007 and 2008 growing seasons at three
time points, corresponding to véraison, mid-ripening and
the putative full-mature stage, in seven commercial vine-
yards located in three different macrozones (Lake Garda,
Valpolicella and Soave) in the province of Verona, Italy.
Fully mature berries were harvested in all vineyards on the
same days: 18 September 2006, 29 August 2007, and
23 September 2008. Berries at véraison were collected
in all the vineyards on 8 August 2006, 18 July 2007,
12 August 2008, while pre-ripening grape was harvested
on 4 September 2006, 8 August 2007, 2 September 2008.
The principal features of each vineyard are summa-

rized in Additional file 1: Table S1, and major meteoro-
logical data over the 3-year sampling period are reported
in Additional file 2: Table S2. For each of the accessions
(producer/year), we harvested 30 clusters from different
positions along two vine rows, with randomized heights
and locations on the plant. Three berries were selected
randomly from each cluster, avoiding those with visible
damage and/or signs of infection. Then we repeated the
sampling procedure three times to obtain three sepa-
rated pools. The berries were frozen immediately in li-
quid nitrogen. Just before metabolite extraction and
microarray analysis, 10 frozen berries from each pool
were crushed and finely ground after removing the
seeds. The representativeness of these powdered pools
was preliminarily assessed by HPLC-ESI-MS analysis
and visual inspections of the resulting chromatograms
(not shown).

Enological analyses
Three replicates of 20 berry samples were crushed and the
resulting must was clarified by centrifugation. The clari-
fied matrix was used for pH and reducing sugars measure-
ments. Reducing sugars were quantified enzymatically
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using a commercial kit (Glucose/Fructose Kit, Enologica
Vason S.p.a., Italy), following the instructions manual.

Extraction, analysis and identification of non-volatile
metabolites
LC-MS-grade acetonitrile, formic acid and water, and
HPLC-grade methanol, were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Unisolv-grade n-pent-
ane and Suprasolv-grade ethylacetate were purchased
by Merck (Darmstadt, Germany).
The metabolites were extracted at room temperature

in three volumes (w/v) of methanol acidified with 0.1 %
(v/v) formic acid in an ultrasonic bath (Falc Instruments,
Bergamo, Italy) at 40 kHz for 15 min. Extracts were cen-
trifuged twice for 10 min at 16,000 × g at 4 °C, diluted 1:2
(v/v) in milliQ water and passed through 0.2-μm Sartorius
Minisart RC4 filters (Sartorius-Stedim Biotech, GmbH,
Goettingen, Germany).
The HPLC-ESI-MS system comprised a Beckman

Coulter Gold 127 HPLC (Beckman Coulter, Fullerton,
CA) equipped with a System Gold 508 Beckman Coulter
autosampler. Metabolites were separated on an analytical
Alltima HP RP-C18 column (150 × 2.1 mm, particle size
3 μm) equipped with a C18 guard column (7.5 × 2.1 mm)
both purchased from Alltech Associates Inc. (Derfield, IL,
USA), using mixtures of solvent A (5 % (v/v) acetonitrile,
0.5 % (v/v) formic acid in water) and solvent B (100 %
acetonitrile). A linear gradient, at a constant flow rate of
0.2 ml/min, was established from 0 to 10 % B in 5 min,
from 10 to 20 % B in 20 min, from 20 to 25 % B in 5 min,
and from 25 to 70 % B in 15 min. Each sample was ana-
lyzed in duplicate, with a 30-μl injection volume and
20 min re-equilibration between each analysis.
Mass spectra were acquired using a Bruker Esquire

6000 ion trap mass spectrometer (Bruker Daltonik
GmbH, Bremen, Germany) equipped with an electro-
spray ionization source. Alternate negative and posi-
tive ion spectra were recorded in the range 50–1500
m/z (full scan mode, 13,000m/z per second). For
metabolite identification, MS/MS and MS3 spectra
were recorded in negative or positive mode in the
range 50–1500m/z with fragmentation amplitude of 1 V.
Nitrogen was used as the nebulizing gas (50 psi, 350 °C)
and drying gas (10 l/min). Helium was used as the collision
gas. The vacuum pressure was 1.4 × 10−5 mbar. parameters:
capillary source +4000 V; end plate offset –500 V; skimmer
–40 V; cap exit –121 V; Oct 1 DC –12 V; Oct 2 DC –
1.70 V; lens 1 5 V; lens 2 60 V; ICC for positive ionization
mode 20,000; ICC for negative ionization mode 7000.
MS data were collected using the Bruker Daltonics Es-

quire v5.2 and Esquire Control v5.2 software, and proc-
essed using the Bruker Daltonics Esquire v5.2 and Data
Analysis v3.2 software (Bruker Daltonik GmbH, Bremen,
Germany). Metabolites were identified by comparing the

m/z values, fragmentation patterns (MS/MS and MS3)
and retention times of each signal with those of available
commercial standards and or with our previously pub-
lished data [15, 16]. When commercial standards were not
available, fragmentation patterns were also compared with
those published in the literature or on-line databases such
as MassBank (www.massbank.jp/en/database.html) and
Human Metabolome Database (http://www.hmdb.ca/).
HPLC-diode array detector (DAD) analysis was carried
out using a Beckman Coulter Gold 126 Solvent Module
equipped with Gold 168 Diode Array Detector under the
same analytical conditions described above, in the wave-
length range 190–600 nm. Chromatographic data were
collected and processed using Beckman Coulter 32 Karat
software v7.0.

Extraction, analysis and identification of volatile
metabolites
Free volatile metabolites were extracted from the same
berry samples described above, using three sampling
replicates. We transferred 4 g of powdered berry tissue
to a 7-ml glass vial with an aluminum insert lid and
thawed the tissue for 90 min before extraction. Follow-
ing the addition of 1 ml MilliQ water and 18.6 μl of a
mixture of the internal standards d13-hexanol (1000 μg/
kg), α-copaene (200 μg/kg) and d3-β-ionone (50 μg/kg)
dissolved in ethanol (kindly provided by The Australian
Wine Research Institute, Adelaide, Australia), the metabo-
lites were extracted with 2 ml of a 1:1 (v/v) mixture of n-
pentane and ethylacetate, stirred for 10 s, incubated for
15 min in a Branson 3510 ultrasonic bath (Branson
Ultrasonic, Danbury, USA) and mixed at room
temperature for 2 h on a Rocking Platform Mixer
(Ratex Instruments Pty, Boronia, VIC, Australia) at
25 rpm. Liquid extracts were collected and stored in glass
vials at –20 °C.
An Agilent Technologies 6890 GC column (Agilent

Technologies, Santa Clara, CA, USA) was coupled to
an Agilent 5973 N mass-selective detector, each con-
trolled using Agilent G1701CA ChemStation software.
The system was also equipped with a Gerstel MPS2
multipurpose sampler controlled by Gerstel Master
software v1.81 and a Gerstel CIS-4 cool inlet with
twister desorption unit (TDU) fitted with a resilanized
borosilicate glass liner with glass wool insert. We
cryofocused each 25-μl sample in the Gerstel CIS-4
held at –10 °C and injected the sample in solvent
vent mode with an injector temperature of –10 °C.
The temperature of the TDU was ramped to 240 °C
at 10 °C/s, transferring the trapped metabolites onto
the GC column. The TDU was then held at 240 °C
for 3 min ensuring no carryover of analytes to the
next sample, as confirmed by the analysis of blanks.
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The GC was fitted with an Agilent non-polar DB-5MS+
column (60 m × 0.25 mm, 0.25 μm) and the carrier gas
was Ultrahigh Purity helium at a linear velocity of 26 cm/s.
The initial flow rate was set to 1.0 ml/min in constant-flow
mode. The oven temperature was started at 40 °C and held
for 7 min before the temperature was increased to 150 °C
at 7 °C/min, then to 170 °C at 2 °C/min and then to 240 °C
at 20 °C/min and held for 15 min. The MS transfer line was
held at 250 °C.
The mass spectrometer quadrupole temperature was

set at 150 °C and the source set at 230 °C. Positive ion
electron impact spectra at 70 eV were recorded in the
m/z range 35–350 for scan runs. Selected ion monitor-
ing (SIM) was used for the relative quantification of tar-
geted metabolites. The n-alkane series (alkane standard
solution C8-C20, Fluka, Sigma-Aldrich) was run using
the same method to benchmark the retention indices.
The identity of compounds was verified by comparison
with Kovats retention indices and mass spectra with
those contained in the NBS, Wiley and AWRI GC-MS
databases, and in an “in house” database of spectra of
authentic standards. A matching of at least the 90 % was
considered for aldehydes, alchools, monoterpenes and
C13-norisoprenoids, while for the other metabolites a
matching of at least 75 % was used.

LC/GC-MS data processing
LC-MS chromatograms were transformed into the
netCDF format using the Bruker Daltonics Esquire v5.2
and Data Analysis v3.2 software (Bruker Daltonik GmbH,
Bremen, Germany).
The open-source software MZmine v2.2 (http://mzmine.

sourceforge.net) was used to extract the data, which was
processed by median fold change normalization before
log transformation and mean centering. The matrix effect
did not substantially affect the relative quantification of
secondary metabolites under our analytical conditions
(data not shown) as we have previously shown [15]. In
order to further evaluate the performances of HPLC-ESI-
MS for relative quantitation, the HPLC-ESI-MS relative
quantitation of the more abundant metabolites were com-
pared with those with obtained by HPLC-DAD, which is a
quantitative techniques (Additional file 3).
GC-MS chromatograms were analyzed using Agilent

C1701 Chemstation software. Peaks were automatically
integrated and the results were checked manually. The
data representing 63 samples × 48 identified molecules
were normalized by internal standard peak areas to
avoid differences in detection efficiencies. Monoterpene
and sesquiterpene compounds were normalized to the
α-copaene peak area, norisoprenoids to the d3-β-ionone
peak area, and remaining compounds to the d13-hexanol
peak area. The resulting data set was autoscaled before
analysis.

Microarray data
The transcriptomic data from seven out of eleven vineyards
sampled in the 2008 growing season (BA, CS, BM, MN,
FA, AM and PM) from our previous work [14] were re-
trieved and reanalyzed in the present work. Briefly, as previ-
ously described, the gene expression microarray data were
obtained by hybridization to a NimbleGen microarray
090818_Vitus_exp_HX12 (Roche, NimbleGen), which con-
tains probes targeting 29,549 predicted grapevine genes,
representing 98.6 % of the genes predicted from the V1 an-
notation of the 12X grapevine genome (http://srs.ebi.ac.uk/)
and 19,091 random probes as negative controls. The
expression data were analyzed using T-MeV v4.8.1 software
(http://sourceforge.net/projects/mev-tm4/) and were nor-
malized based on the mean center genes/rows adjustment,
with Pearson’s correlation metric chosen as the statistical
metric. The obtained data set was log-transformed and
mean centered prior to analysis.

Data analysis and modelling
A preliminary data analysis based on ANOVA was
performed to highlight the role of vintage and pro-
ducer on the variation of each single measured me-
tabolite. Since the design of experiments was characterized
by restricted randomization because the samples collection
resulted to be dependent on the year, we applied a split-plot
ANOVA approach where the whole plot factors were the
year of sample collection and the replicate while the subplot
factor was the producer [17]. This univariate investigation
did not take into account the simultaneous relationships
among variables but focused solely on the mean and the
variance of a single variable. For this reason we applied a
suitable multivariate data analysis strategy based on projec-
tion methods which allowed us to include the correlation
structure among the variables in the modeling of the re-
sponse of interest.
Exploratory multivariate data analysis was carried out

by principal component analysis (PCA) whereas partial
least squares projection to latent structures discriminant
analysis (PLS-DA), orthogonal projection to latent struc-
tures discriminant analysis (O2PLS-DA) and orthogonal
constrained PLS-DA (oCPLS2-DA), developed in the
present work, were used to investigate differences in the
metabolic content of the samples.
Orthogonal constraints can be included in PLS-DA

using a suitable orthogonal projection matrix in the
maximization problem solved by PLS, as described in
Additional file 4. The inclusion of constraints in data
modeling allowed us to focus the analysis of the system-
atic variation of the data based solely on differences be-
tween the sample groups, excluding the effects of other
factors such as vintage. Indeed, PLS-DA could include
the variation related to the vintage in the calculation of
the latent space producing models where both “terroir”
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and vintage confound their effects while oCPLS2-DA is
able to generate latent components where the effects of
vintage are excluded. In other words, PLS-DA could pro-
vide false discoveries depending on the design of the ex-
periment and on the correlation structure of the collected
data. For this reason, the year of sample collection was
used to build the matrix specifying the constraints obtain-
ing latent structures orthogonal to this metadata by
oCPLS2-DA, thus removing information related to the
vintage from the data modeling.
Projection methods such as PLS-DA usually produce a

large number of latent components compromising a
clear interpretation of the model. To focus the struc-
tured variation on a suitable space described by a re-
duced number of latent components, thus simplifying
the interpretation of the model, we applied the post-
transformation approach described by Dall’Acqua et al.
[18]. The weight matrix of the oCPLS2-DA and PLS-DA
models were therefore rotated to obtain a new post-
transformed model where only N – 1 predictive latent
components were used to explain the differences be-
tween the N classes under investigation. The method is
described in Additional file 4.
The role played by the measured variables in the

models was investigated by suitable correlation load-
ing plots. According to good practice for model
building and validation, we performed a permutation
test on the class responses and N-fold full cross-
validation with different values of N (N = 6, 7, 8) to
avoid over-fitting and to evaluate the reliability of
the models. The number of latent components was
determined on the basis of the first maximum of Q2

during 7-fold full cross-validation under the con-
straint to pass the permutation test on the class
responses.
PCA and PLS-DA were carried out using SIMCA v13

(Umetrics, Umea, Sweden) and software platform R
v3.0.2 (R Foundation for Statistical Computing) was used
to build the oCPLS2-DA model (user-written R func-
tion), for post-transforming the models (user-written R
function) and for split-plot ANOVA.
In order to investigate the specific response of berry

metabolome to terroir specific environmental features,
for each of the features listed in Additional file 1: Table S1
several possible classification were created; only some of
these combinations resulted in O2PLS-DA models, that
were subsequently validated.

Results
The fully-mature berry metabolome is principally affected
by vintage
Corvina clone 48 berries were harvested at three time
points corresponding to the beginning of vèraison
(that is the term used by viticulturist to indicate the

onset of ripening), mid-ripening and full maturity in
seven vineyards located in the three most important
macrozones for wine production surrounding Verona
(Soave, Valpolicella and Lake Garda; Additional file 1:
Table S1) during the 2006, 2007 and 2008 growing
seasons. Parameters reflecting the uniform degree of
ripeness among different vineyards and growing sea-
sons have been reported in Additional file 1: Table S1
and, only for some of the vineyards/vintages, also in
Dal Santo et al., 2013 [14].
HPLC-ESI-MS was used to characterize the non-

volatile metabolites. Among 551 signals, 73 were
assigned to molecules, 131 to aglycones, fragments and
molecular adducts, and the others remained unidenti-
fied. The identified metabolites included 18 anthocya-
nins, 13 flavan-3-ols and procyanidins, 14 flavonols and
flavanols, 18 stilbenes and viniferins, 6 hydroxycinnamic
acids, and a small number of sugars, amino acids and
non-aromatic organic acids. Structural characterization
by MS/MS and database searching revealed eight new
molecules that were not identified in the previously-
reported Corvina metabolome [15, 16]; Additional file 5:
Table S3).
GC-MS was used to investigate the volatile molecules,

revealing 48 identifiable molecules in the ripe berry me-
tabolome (Additional file 6: Table S4). Many of these
molecules were sesquiterpenes (representing 40.8 % of
all the compounds identified by GC-MS). The other
identifiable volatile compounds were aldehydes (14.3 %),
carboxylic acids (12.2 %), monoterpenes (8.2 %), alcohols
(8.2 %), hydrocarbons (6.1 %), esters (4.1 %), norisopre-
noids (4.1 %) and other sesquiterpenoids (2 %).
The analysis of variance (ANOVA) based on Split-plot

design was preliminarly used to retrieve all those metab-
olites that significantly varied through the different vin-
tages and producers (Additional file 7: Table S5).
Considering only the identified metabolites, most of
them varied according to the vintage and the producers.
Going into details, among the non volatile metabolites,
67 % of them varied according to the vintage and the
69 % according to the producers. These variables
belonged to all the main classes of metabolites. Among
the volatile metabolites, 39 % of them varied according
to the vintage and 67 % of them according to the pro-
ducers. Interestingly, among the volatile metabolites the
sesquiterpenes showed the strongest modulation accord-
ing to the producers. Then, the effects of vintage and
producer on the metabolite profile results to be complex
to investigate. For this reason we performed our strategy
for data modeling based on orthogonal constrained PLS-
DA that allowed us to exclude the effects of vintage on
the metabolite profile.
The entire HPLC-ESI-MS data set was explored by

PCA. The score scatter plot shows that PC1, explaining
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31 % of the total variance, could mainly distinguish the
developmental stage, separating véraison stage from mid
ripening and fully mature stages (Fig. 1a), whereas PC2
and PC3, explaining 20 % of the total variance, separated
the samples according to vintage (Fig. 1b).
By applying a supervised PLS-DA approach, we obtained

a reliable model (two latent components, R2 = 0.55, Q2
6-fold

CV = 0.51, Q2
7-fold CV = 0.49, Q2

8-fold CV = 0.51) showing as
expected that the fully mature berry was mainly char-
acterized by higher levels of anthocyanins and stil-
benes, and by lower levels of hydroxycinnamic acids
and procyanindis, compared to the véraison phase
(Additional file 8: Figure S1A, B).
Focusing specifically on fully-mature berries, PCA re-

vealed that the vintage effect was so strong that it pre-
vented any obvious clustering according to vineyards,
each representing a specific terroir (Fig. 1c). The behav-
ior of the 2006 vintage was intermediate between the
2007 and 2008 vintages, as previously reported for the
full transcriptomic data set based on the same biological
material [14].
PLS-DA generated a model with two components (R2 =

0.93, Q2
6-fold CV = 0.92, Q2

7-fold CV = 0.92, Q2
8-fold CV = 0.91)

that could distinguish the vintage. Analysis of the
loading structure showed that the 2008 vintage pro-
moted the accumulation of secondary metabolites, par-
ticularly anthocyanins and stilbenes (Additional file 8:
Figure S1C, D).
The GC-MS data set for fully-mature berries was also

investigated by PCA, and showed a rough clustering
based on vintage. A clearer separation was obtained by
PLS-DA (three components, R2 = 0.61, Q2

6-fold CV = 0.45,

Q2
7-fold CV = 0.51, Q2

8-fold CV = 0.41) but no metabolites
were correlated strongly with a specific vintage (Additional
file 8: Figure S1E, F).

Some metabolome components show enhanced plasticity
The vintage-specific effects on the metabolite content of
our berry samples masked the other environmental ef-
fects (Fig. 1b, c). We therefore used a constrained tech-
nique to model the data, by generating latent variables
orthogonal to the vintage by oCPLS2-DA. We initially
analyzed the data according to geographical origin (the
three macrozones) and then by the different vineyards
within each macrozone.
The geographical oCPLS2-DA model for non-volatile

metabolites showed four components (R2 = 0.79, Q2
6-fold

CV = 0.71, Q2
7-fold CV = 0.73, Q2

8-fold CV = 0.71). The score
scatter plot in Fig. 2a shows a clear separation of the
samples from each of the three macrozones. The correl-
ation loading plot (Fig. 2b) revealed the presence of
groups of metabolites characterizing each macrozone.
Specifically, stilbenes clearly characterized vineyards lo-
cated in the Lake Garda macrozone, some flavonoids
characterized Soave and Valpolicella vineyards, and the
different vineyards and macrozones were also character-
ized by different anthocyanins (Additional file 9: Table S6).
These differences were investigated in more detail by
characterizing the putative markers of fully-mature ber-
ries listed in Additional file 9: Table S6 and assigning
them to a particular chemical class (Additional file 10:
Table S7). The results are shown for each of the seven
vineyards in Fig. 3.

Fig. 1 PCA score scatter plot of the model obtained for the metabolites detected by HPLC-ESI-MS. Samples, corresponding to the seven vineyards
(sampled in vintages 2006, 2007 and 2008 at three time points) are roughly separated according to developmental stage (a; explained variance
equal to 44 %). Stage 1: beginning of véraison; stage 2: pre-ripening; stage 3: full maturity. PCA score scatter plot of the same data set used in (a)
colored according to vintage (b; explained variance equal to 20 %). Blue: 2006; green: 2007; red: 2008. PCA score scatter plot of fully-ripe grapes
(c; explained variance equal to 35 %). Blue: 2006; green: 2007; red: 2008. Vineyards: ▼ = AM; ● = BA; ◼ = BM; ✦ = CS; ♦ = FA; ★ =MN; ▲ = PM
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Among the stilbenes that were markers of the Lake
Garda macrozone, resveratrol dimers, trimers and tetra-
mers (ST oligomers) were particularly associated with
vineyard BA. In contrast, the ST monomers resveratrol,
resveratrol glucoside (piceide) and piceatannol glucoside
(astringin) were not identified as general markers of the
Lake Garda macrozone and were not associated with
vineyard BA, but they were positively correlated with the
other Lake Garda vineyard, CS.
Among the anthocyanin markers, some Valpolicella

and Soave vineyards were characterized by acylated an-
thocyanins (AC1), whereas Lake Garda and Valpolicella
vineyards were characterized by some non-acylated an-
thocyanins (AC2), and other Valpolicella vineyards were
strongly characterized by other non-acylated anthocya-
nins (AC3, especially the more decorated molecules del-
phinidin and petunidin). Among the flavonoid markers,
some quercetin derivatives characterized the Valpolicella
and Soave vineyards (FLAV1), one taxifolin derivative
mainly characterized the Lake Garda vineyards (FLAV2),
and another putative flavanone characterized the Val-
policella vineyards (FLAV3).
Other common flavonoids, such as myricetin glyco-

sides and various flavanones (dihydrokaempferol and
naringenin glycosides) did not strongly characterize any
of the vineyards under investigation. Furthermore, the
flavan-3-ols, procyanidins and phenolic acid derivatives did
not strongly correlate with any of the samples under

investigation, with the exception of a hydroxytyrosol deriva-
tive that negatively correlated with the Lake Garda vine-
yards. This indicated substantial differences between
distinct classes of secondary metabolites in terms of their
ability to respond to terroir-specific environmental stimuli.
In the second data analysis step, oCPLS2-DA was applied

in each of the three geographical regions and the models
showed that the producers were clearly separated from
each other (Fig. 4 and Additional file 11: Table S8). The
resulting model for Lake Garda had two components (R2 =
0.97, Q2

6-fold CV = 0.89, Q2
7-fold CV = 0.92, Q2

8-fold CV = 0.91),
the model for Valpolicella had three components (R2 =
0.95, Q2

6-fold CV = 0.93, Q2
7-fold CV = 0.92, Q2

8-fold CV = 0.92)
and the model for Soave had two components (R2 = 0.95,
Q2

6-fold CV = 0.91, Q2
7-fold CV = 0.91, Q2

8-fold CV = 0.92).
The two vineyards in the Lake Garda macrozone were

characterized by the abundance of stilbenes (BA) and
some anthocyanins and flavonoids (CS). Within the
Soave macrozone, vineyard AM was characterized by
certain stilbenes, anthocyanins and flavonoids, whereas
vineyard PM was characterized predominantly by un-
identified metabolites. The three Valpolicella vineyards
could be distinguished based on the content of flavan-3-
ols and procyanidins (BM), coumarated malvidin (FA)
and certain stilbenes (MN).
The same oCPLS2-DA strategy was applied to the

volatile metabolites detected by GC-MS. Once again, we
were able to distinguish the three macrozones and each

Fig. 2 oCPLS2-DA score scatter plot (a) and correlation loading plot (b) of the model for the metabolites detected by HPLC-ESI-MS. Samples,
corresponding to seven grape vineyards at three developmental stages are separated according to the geographical macrozones, regardless of
the vintage. Groups of metabolites are depicted in different colors. Vineyards: ▼ = AM; ● = BA; ◼ = BM; ✦ = CS; ♦ = FA; ★ = MN; ▲ = PM.
aa = amino acid; ac = anthocyanin; flav = flavonoid; hb = hydroxybenzoic acid; hc = hydroxycinnamic acid; oa = organic acid; pr = procyanidin;
s = sugar; st = stilbene and viniferin; ui = unidentified
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of the vineyards within each macrozone. The oCPLS2-
DA model for geographical origin revealed five components
(R2 = 0.68, Q2

6-fold CV = 0.46, Q2
7-fold CV = 0.49, Q2

8-fold CV =
0.45) whereas the model for the Lake Garda producers
had one component (R2 = 0.92, Q2

6-fold CV = 0.89, Q2
7-fold

CV = 0.91, Q2
8-fold CV = 0.90), the model for the Valpolicella

producers had five components (R2 = 0.93, Q2
6-fold CV =

0.76, Q2
7-fold CV = 0.80, Q2

8-fold CV = 0.79) and the model for
the Soave producers had three components (R2 = 0.95, Q2

6-fold CV = 0.80, Q2
7-fold CV = 0.80, Q2

8-fold CV = 0.82) as
shown in Figs. 5a and 6. The Lake Garda vineyards
were best characterized by this approach, on the basis
of benzene derivatives, esters, sesquiterpenes and
monoterpenes (Fig. 5b). Vineyard BA was mainly
characterized by sesquiterpenes and C13 norisopre-
noids, whereas vineyard CS was characterized by cer-
tain sesquiterpenes (Fig. 6a, b and Additional file 12:

Table S9). In the Soave macrozone, vineyard AM was
characterized by benzene derivatives, esters and several
sesquiterpenes (Fig. 6c, d). Finally, in the Valpolicella
macrozone, vineyard MN was characterized by C6 alde-
hydes and C13-norisoprenoids, whereas vineyard FA was
characterized by low levels of benzene derivatives and
some sesquiterpenes (Fig. 6e, f ).

Berry transcriptome analysis supports environment-
dependent metabolome plasticity
In order to investigate the environment-dependent plas-
ticity of some components of the Corvina metabolome,
we retrieved berry transcriptomic data from the seven
wine vineyards sampled in the 2008 growing season
(BA, CS, BM, MN, FA, AM and PM) from our previous
work [14] in which we reported the general plasticity of
the entire grapevine berry transcriptome using the same

Fig. 3 Distribution of macrozone metabolic markers, determined by HPLC-MS analysis, among the individual vineyards and in all three vintages.
The markers are listed in Additional file 9: Table S6 and are assigned to a chemical class and classified according to macrozone relevance, as
shown in Additional file 10: Table S7. Blue bars = 2006 vintage; green bars = 2007 vintage; red bars = 2008 vintage. Yellow rectangle: Lake Garda
macrozone; sky blue: Soave macrozone; fuchsia: Valpolicella macrozone. a.u. = arbitrary units
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biological material described herein. First, we inspected the
expression profiles of the Vitis vinifera stilbene synthase
gene family [19] throughout our experimental design.
Stilbene synthases are key enzymes catalyzing the final step
in the phenylalanine/polymalonate branch of the phenyl-
propanoid pathway that eventually produces stilbenes. The
heat map shows the clear upregulation of most of the
family starting from the mid-ripening stage in berries from

vineyards BA and CS (Lake Garda) and pronounced upreg-
ulation in fully-mature berries from vineyards BM and MN,
in line with the metabolomic data (Fig. 3). We then ana-
lyzed the expression profiles of the laccase gene family
(Additional file 13: Figure S2), one member of which
(transparent testa 10, tt10) is involved in the oxidative
polymerization of phenolic compounds in the Arabidopsis
thaliana phenylpropanoid pathway [20]. Analysis using

Fig. 4 oCPLS2-DA models using the metabolites detected by HPLC-ESI-MS applied within each of the three geographical regions to distinguish
the vineyards. For each model, the score scatter plot (a, c, e) and correlation loading plot (b, d, f) are provided. Samples, corresponding to seven
vineyards at three developmental stages are separated regardless of the vintage. Vineyards: ▼ = AM; ● = BA; ◼ = BM; ✦ = CS; ♦ = FA; ★ =MN; ▲
= PM. Yellow (a, b): Lake Garda macrozone; sky blue (c, d): Soave macrozone; fuchsia (e, f): Valpolicella macrozone. Groups of metabolites are
shown in different colors. aa = amino acid; ac = anthocyanin; flav = flavonoid; hb = hydroxybenzoic acid; hc = hydroxycinnamic acid; oa = organic
acid; pr = procyanidin; s = sugar; st = stilbene and viniferin; ui = unidentified

Anesi et al. BMC Plant Biology  (2015) 15:191 Page 9 of 17



LacSubPred software [21] showed that the laccases
expressed after véraison were mainly class 8 enzymes like
tt10, and were expressed differentially in berries from
vineyards BA and CS, which are characterized by stilbenes
with different degrees of polymerization (Figs. 2 and 3).
The statistical approach described above was used to re-

trieve transcripts associated with the geographical area re-
gardless of the vintage. This was achieved by creating a
data set containing berry transcriptomic data representing
all three developmental stages of each vintage, sourced
from three vineyards, one representing each macrozone
(CS from Lake Garda, MN from Valpolicella and AM from
Soave). The data set included 292 selected genes involved
in non-volatile secondary metabolism (Additional file 14:
Table S10). Based on PCA results (Fig. 7b), we applied
oCPLS2-DA to both the mid ripening and fully mature ber-
ries, because the accumulation of a metabolite in fully ma-
ture fruits is often triggered by an earlier transcriptional
change (Fig. 7c, d). The score scatter plot and the correl-
ation loading plot of the obtained model (four components,
R2 = 0.83, Q2

6-fold CV = 0.70, Q2
7-fold CV = 0.77, Q2

8-fold CV =
0.73) are reported in Fig. 7c and d, respectively. Vineyard
MN, which is associated with the positive metabolomic
markers AC1, AC3, FLAV1 and FLAV3 (Fig. 3), was also
found to be associated with transcripts for the three tran-
scription factors VvMybA1, VvMybA2 and VvMybA3 (VI
T_02s0033g00410, VIT_02s0033g00380 and VIT_02s0033
g00450, respectively), a flavonoid 3',5'-hydroxylase (VIT_0
6s0009g02910) and a 4-coumarate-CoA ligase (VIT_17s0
000g01790) (Additional file 14: Table S10), all of which are
active in the berry anthocyanin biosynthesis pathway [22].
This vineyard was also associated with transcripts for two

flavonol synthases (VIT_13s0047g00210, VIT_07s0031g00
100) and the transcription factor VvMybF1 (VIT_07s0005g
01210), which are involved in berry flavonol synthesis [23],
again supporting the metabolomic data. Similarly, vineyard
CS, which is characterized at the metabolomic level by the
abundance of stilbenes (Fig. 3), was found to be associated
with transcripts for the R2-R3 MYB transcription factor
VvMYB14 (VIT_07s0005g03340) (Additional file 14:
Table S10) which regulates berry stilbene biosynthesis
[24]. Interestingly, Soave vineyard AM lacked strongly
positive transcriptomic markers, but was associated with
several negative transcriptomic markers linked to the low
level of AC2 anthocyanins (Fig. 3), including anthocyanin
O-methyltransferase VvAOMT1 (VIT_01s0010g03510),
MATE efflux family protein VvAnthoMATE2 (VIT_16s00
50g00910), UDP glucose:flavonoid 3-o-glucosyltransferase
VvUFGT (VIT_16s0039g02230) and anthocyanin mem-
brane protein 1 (Anm1, VIT_08s0007G03560). We also
observed a correlation between the low level of FLAV1
molecules in berries from vineyard CS and the presence
among its negative markers of VvMyb5a (VIT_08s000
7g07230), a transcription factor involved in the general
grapevine flavonoid pathway [25, 26]. When the same stat-
istical approach was applied to a data set of selected
volatile-related transcripts, we found no correlation among
the transcripts and volatile metabolites (data not shown).

Correlation between secondary metabolites and specific
terroir features
We investigated the specific responses of Corvina berries
to terroir-specific environmental components by gener-
ating several classifications for each of the components

Fig. 5 oCPLS2-DA score plot (a) and correlation loading plot (b) using the volatile metabolites as X variables. Samples, corresponding to seven
vineyards at three developmental stages are separated according to the geographical macrozones, regardless of the vintage. Groups of
metabolites are shown in different colors. ui = unidentified. Vineyards: ▼ = AM; ● = BA; ◼ = BM; ✦ = CS; ♦ = FA; ★ =MN; ▲ = PM
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described in Additional file 1: Table S1; only some
of these classifications resulted in O2PLS-DA models,
reported in Table 1, correlating the berry metabolome
with the vineyard features (see Additional file 1: Table S1).
We considered as reliable only those models with a

Q2
7-fold CV value greater than 0.5 that also passed the per-

mutation test on the response (400 random permuta-
tions). Table 1 shows a complete list of the models we
tested and their relative Q2

7-fold CV values, with the reliable
models highlighted in bold.

Fig. 6 oCPLS2-DA models using the volatile metabolites applied within each of the three geographical regions to distinguish the vineyards. For
each model, the score scatter plot (a, c, e) and the correlation loading plot (b, d, f) are provided. Samples, corresponding to seven vineyards at
three developmental stages are separated regardless of the vintage. Vineyards: ▼ = AM; ● = BA; ◼ = BM; ✦ = CS; ♦ = FA; ★ =MN; ▲ = PM. Yellow:
Lake Garda macrozone (a, b); sky blue: Soave macrozone (c, d); fuchsia: Valpolicella macrozone (e, f). Groups of metabolites are shown in different
colors. ui = unidentified
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The loading plot showed that no individual metabo-
lites correlated strongly (pq(corr) >0.75) with any of the
terroir features. Even in the best models for metabolites
detected by LC-MS (macrozone, Lake Garda vs. others,
soil total lime, soil clay, soil exchangeable potassium)
and by GC-MS (macrozone, Lake Garda vs. others,
training system and soil active lime) there was only a
low correlation between individual metabolites and spe-
cific terroir features (Additional file 15). The existence of
reliable O2PLS-DA models lacking strong characteristic
metabolites suggests that the observed correlations be-
tween specific terroir features and the berry metabolome
probably reflect many small metabolomic changes rather

than a small number of major metabolic shifts. In the
context of these slight correlations, we found once again
that flavonoids and stilbenes were assigned to the more
plastic fraction of the metabolome, given that some flavo-
noids correlated with the Valpolicella and Soave macro-
zones, low soil clay, total lime and exchangeable potassium,
whereas stilbenes correlated with the Lake Garda macro-
zone, low soil clay and an average amount of soil exchange-
able potassium.

Discussion
The complex relationship between the composition of
grape berries and the environment of the grapevine plant

Fig. 7 Grapevine berry transcriptome analysis. Heat map of the stilbene synthase gene family (VvSTSs) showing transcriptional profiles (a). The
heat map was generated with TMeV v4.8.1 using the average expression level of the three replicates. Data were normalized based on the mean
center genes/rows adjustment, and Pearson’s correlation was chosen as the statistical metric. PCA score scatter plot obtained using transcripts
related to secondary metabolism (b; explained variance equal to 69 %). Stage 1: beginning of véraison; stage 2: pre-ripening; stage 3: full maturity.
oCPLS2-DA score scatter plot (c) and correlation loading plot (d). Samples are separated according to the geographical macrozones, regardless of
the vintage. Vineyards: ▼ = AM; ✦ = CS; ★ =MN. In (d) the circles represent the macrozone, while the ✦ symbols represent the transcripts
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during ripening was investigated by untargeted metabolo-
mics analysis (LC-MS and GC-MS), transcriptomics ana-
lysis (microarray expression profiles) and the development
and application of appropriate chemometric statistical
analysis methods. We studied a single clone of the Cor-
vina variety to eliminate any genotype-dependent variabil-
ity, thus focusing solely on responses to the terroir. The
variability of the responses therefore depended entirely on
the plasticity of the selected genotype.
In our recent analysis of the berry transcriptome, we ob-

served a strong vintage-specific effect on gene expression
[14]. As anticipated, we also observed such an effect on
the metabolome in the current study, suggesting that ter-
roir-specific effects can only be determined by including
multiple vintages in the analysis, to avoid confusing ter-
roir-specific effects with differences caused by the growing
season. For example, favorable growing seasons such as
2008 resulted in the accumulation of most of the second-
ary metabolites we detected, whereas a small number of
unidentified metabolites were more characteristic of the
less favorable 2007 season. The climate is probably the
most important vintage-specific factor affecting berry
quality at harvest. A minimum cumulative temperature
(expressed as the Huglin heat summation index) must be
achieved during the growing season to ensure the
complete ripening of certain cultivars [27, 28]. Tempera-
tures that are too low delay ripening, but temperatures
that are too high promote early ripening which also re-
duces the berry quality. The 2007 vintage had a relatively

high Huglin index with a harvest date set at the end of
August. No anthocyanins correlated with in the 2007 vin-
tage, probably reflecting the damaging effect of solar radi-
ation on the berries, and the fact that temperatures
exceeding 35 °C inhibit color development [29, 30]. Stil-
benes and viniferins were also less abundant in the 2007
vintage, consistent with previous findings that stilbene
and viniferin levels decline in dry seasons [31]. The 2008
vintage was positively correlated with anthocyanins and
flavanones, whereas the 2006 vintage showed a compos-
ition that was intermediate between 2007 and 2008. The
2008 and 2006 vintages were rated as very good or out-
standing [32, 33] whereas the 2007 vintage was rated as
good.
The non-volatile metabolites detected by LC-MS

responded mainly to the ripening program, although
some responded both to the ripening program and
environmental parameters. Hydroxycinnamic acid de-
rivatives and flavan-3-ols/procyanidins appeared to correl-
ate mainly with the ripening program, with the levels of
both declining from véraison to full ripeness. In the full-
mature berries they proved to be the less plastic compo-
nents of the metabolome, since their did not characterize
any of the vineyards, thus showing poor ability to respond
to the different environmental solicitations. Other compo-
nents of the metabolome, including flavonoids, stilbenes
and anthocyanins, were strongly dependent on the devel-
opmental program but nevertheless showed significant
plasticity with respect to the seven individual vineyards

Table 1 List of the OPLS-DA models that were validated using a cross-validation test with 200 permutations, showing the classes
that were used

Non-volatile metabolome Volatile metabolome

OPLS-DA model Classes Q2 Q2

Macrozone Soave vs. valpolicella vs. lake garda 0.541 0.384

Macrozone Lake garda vineyards vs. others 0.635 0.536

Vineyard altitude >200 m vs. < 200 m 0.556 0.0117

Row direction N–S vs. E–W 0.396 0.521

Training system Parral vs. guyot - 0.549

Soil type pH (<8 vs. >8) 0.631 0.621

Soil type Total lime % (<10 vs. 10–20 vs. >20) 0.671 -

Soil type Active lime % (<4 vs. > 4) 0.179 0.646

Soil type Loam % (<30 vs. 30–50 vs. >50) 0.322 0.29

Soil type Clay % (<25 % vs. >25 %) 0.582 0.226

Soil type Sand % (<20 vs. 20–50 vs. >50) 0.198 -

Soil type Organic matter % (<2 vs. 2–2.5 vs. >2.5) 0.588 0.368

Soil type Exchangeable phosphorus mg/kg (<30 vs. 30–50 vs. >50) 0.174 -

Soil type Exchangeable potassium mg/kg (<200 vs. 200–400 vs. >400) 0.669 0.426

Soil type Exchangeable magnesium mg/kg (<300 vs. 300–700 vs. >700) 0.446 0.426

Soil type Exchangeable calcium mg/kg (3000–8000 vs. >8000) 0.291 0.086

Fully-validated models with a Q2 value greater than 0.5 are shown in bold separately for the non-volatile (LC-MS) and volatile (GC-MS) data sets
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and the three different macrozones. High levels of stil-
benes and low levels of flavonoids were typical of the two
vineyards located in the Lake Garda macrozone, whereas
certain flavonoids were characteristic of the vineyards in
the Soave and Valpolicella macrozones, and different an-
thocyanins characterized the different vineyards and
macrozones. Within each of the macrozones, the individ-
ual vineyards were easily distinguishable by their specific
chemical signatures.
In terms of terroir-specific features, correlations were

observed mainly for stilbenes and flavonoids. Previous
studies have considered the environment-dependent ac-
cumulation of secondary metabolites in ripened berries but
have focused on individual factors or small groups, typically
including light, water and temperature [10, 11, 34–36].
Strong light induces the expression of genes repre-
senting the flavonoid and anthocyanin biosynthesis
pathways, and the accumulation of both metabolites
(which protect plants from excess solar irradiation),
whereas shading alters the composition of anthocya-
nins and reduces the accumulation of flavonols [37, 38].
Water deficit induces the accumulation of anthocya-
nins and has a variable effect on stilbenes and flavononols
[39–43]. Low temperatures induce the accumulation of
anthocyanins whereas high temperatures inhibit the accu-
mulation of both anthocyanins and flavonoids [44, 45].
More complex environmental parameters such as the ele-
vation of vineyards have also been considered, and stil-
benes tend to accumulate at higher elevations, albeit in a
cultivar-dependent manner [46].
The terroir in which a vine grows and its berries ripen is

more complex than the individual factors described above
because multiple factors combine and interact to generate
a large number of variables. At least three different types
of environmental variable may contribute to the terroir,
namely the vintage (e.g., climatic factors), stable environ-
mental features (e.g., soil composition and viticultural
practices) and variables reflecting the interaction between
vintage-specific factors and stable environmental features.
The experimental approaches used during this investiga-
tion allowed us to separate the vintage-specific effects
from those caused by more stable environmental features,
whereas effects potentially caused by the interaction be-
tween these components were not revealed by our ana-
lysis. Our approach was able to remove the effects caused
by vintage, thus highlighting groups of metabolites charac-
terizing each geographical macrozone and each vineyard
within a macrozone, providing a reliable objective bench-
mark for the concept of terroir.
We investigated the relationship between stable terroir-

specific features and the metabolic profile of the ber-
ries in detail. The composition of berries is known to
be affected by soil properties [47–51] and viticultural
practices [52–55]. We found that the vineyard altitude

and several soil properties (pH, total lime, active lime, per-
centage clay, organic matter and exchangeable potassium)
correlated with the composition of non-volatile metabo-
lites. We also found that viticultural practices (row direc-
tion and training system) and certain soil properties (pH
and active lime) correlated with the composition of vola-
tile metabolites. Despite these results, the Q2 values were
low and no individual metabolite achieved a pq(corr) value
greater than 0.75 for any of the terroir features. However,
we observed correlations for broad categories of metabo-
lites (e.g., active lime and volatile metabolites, and vine-
yard altitude and non-volatile metabolites). These data
indicate that the observed clustering reflected small corre-
lated changes in many metabolites rather than radical
changes in the levels of a few key metabolites.
Transcriptomics analysis revealed that the accumula-

tion of several metabolites induced by terroir-specific en-
vironmental conditions was positively correlated with
the regulation of the corresponding metabolic pathways
at the level of transcription. The clearest example was
the stilbene synthase gene family in the Lake Garda
macrozone, and to a lesser extent also in the Valpolicella
macrozone (Fig. 7a). Previous studies have shown that
the expression of genes related to stilbene synthesis is
enhanced by environmental stress, especially water def-
icit [56], wounding, UV-C exposure and infection with
pathogens [19]. These data suggest that the environmen-
tal and viticultural parameters characterizing the Lake
Garda macrozone may act as modulators of stilbene me-
tabolism during the ripening of Corvina berries.
Genes related to anthocyanin and flavonoid synthesis

also appeared to be influenced by the terroir and their ex-
pression showed a positive correlation with the accumula-
tion of the corresponding metabolites. This suggests that
the terroir may induce a climate-independent change in
the composition of phenolic compounds by transcriptome
remodeling that persists over different vintages. Previous
reports have indicated that the berry-specific expression
of genes related to anthocyanin synthesis shows substan-
tial plasticity and is greatly influenced by the environment
[9, 44, 57].
Finally, we did not find a clear correlation between the

accumulation of volatile metabolites and the expression
of genes required for their synthesis, suggesting that the
plasticity of the volatile metabolome might not be solely
controlled by regulating the transcription of genes in-
volved in the corresponding biosynthesis pathways. In-
deed, volatiles found in grapes might be formed by still
unknown pathways or they might origin from non-
biological reactions.

Conclusions
The metabolome and transcriptome characterization of
grape berries from a single clone of the Corvina variety
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cultivated in seven different vineyards, over a three-year
trial period, together with the development of statistical
tools to overcome the dominant vintage effects, allowed
us to see a terroir-dependent plasticity of the metabo-
lome and of the related transcripts, which persists over
several vintages. Within the various metabolite classes,
clear differences in the terroir dependent plasticity were
seen: stilbenes, anthocyanins, flavonoids and some VOCs
(especially sesquiterpenes) proved to be the more plastic
component of the metabolome, while other component,
such as the procyanindins and flavan-3-ols were much
more stable. On the other side, only weak relationship
were observed between the metabolome and individual
terroir-specific features (including soil composition and
viticultural practices).

Availability of supporting data
The data sets supporting the metabolome results of this
article are included within the article and its additional
files. The microarray data were downloaded from Gene
Expression Omnibus (GEO) using accession number
GSE41633 at website http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE41633.

Additional files

Additional file 1: Table S1. Principal features of each vineyard: a)
macrozone; b) height above sea level; c) rootstock type; d) row direction
(N–S = north–south; E–W= east–west; e) training system; f) soil type,
based on USDA classification triangle (www.nrcs.usda.gov/Internet/
FSE_DOCUMENTS/16/stelprdb1044821.ppt); g) total lime content,
percentage; h) active lime content, percentage; i) pH; j) organic
substance content, percentage; k) exchangeable phosphorus content
(mg/kg). Soil composition data were provided by ORVIT – Società per
la Valorizzazione dei Vini Veronesi (Verona, Italy). (DOCX 20 kb)

Additional file 2: Table S2. Main climatic parameters recorded for the
2006, 2007 and 2008 vintages by meteorological stations located in each
macrozone (Lake Garda, Valpolicella and Soave) and kindly provided by
A.R.P.A.V. (Azienda Regionale per la Prevenzione Ambientale del Veneto,
Centro Metereologico di Teolo, Padova, Italy). The values reported for
each parameter relate to: a) the period 1 April to 30 September and 2)
ripening phenological stage (42 days before harvesting). The Huglin
index is defined as the sum of average and maximum temperatures
above 10 °C in the period 1 April to 30 September for a given location;
K = 1.04. (DOCX 16 kb)

Additional file 3: Heat map representing the areas of the main
chromatographic peaks assessed by HPLC-DAD and HPLC-ESI-MS
for the seven vineyards and fully-ripened berries. Each value
represents the average of the three replicates. Areas assessed with HPLC-DAD
were measured at 320 nm for Hc, 520 nm for Ac and 290 nm for Fl. The
values for LC-ESI-MS samples are the same reported in the data
matrix obtained after processing with MZmine. Rt: retention time,
m/z: mass/charge ratio; Hc: hydroxycinnamic acid; Ac: anthocyanin;
Fl: flavonoid; AM, BA, BM, CS, FA, MN, PM represent the vineyards.
(DOCX 390 kb)

Additional file 4: Method used to build the orthogonal constrained
PLS-DA model and the mathematical properties of the approach
used to post-transform the oCPLS2-DA model. (DOCX 134 kb)

Additional file 5: Table S3. List of molecules identified in the
HPLC-ESI-MS data set generated by MZmine software. a) ID based

on MZmine data matrix; b) row m/z of parent ions; c) retention
time (RT) in minutes; d) putative identification; e) class; aa: amino acids; ac:
anthocyanins; flav: flavonoids; fr: fragment; hb: hydroxybenzoic acids; hc:
hydroxycinnamic acids; oa: organic acids; pr: procyanidins; s: sugars; st:
stilbenes; t: tannins; ui: unidentified; f) MS/MS fragments of parent ions;
fragments selected for further fragmentation are shown in bold; g) MS3

fragments generated from ions reported in bold in the MS/MS column.
(XLSX 42 kb)

Additional file 6: Table S4. List of molecules identified in the GC-MS
data set generated by Agilent Chemstation software. a) ID generated by
Agilent Chemstation software; b) retention time (RT) in minutes; c) Kovats
retention Index (KI); d) putative identification; e) class; f) typical descriptors.
(XLSX 14 kb)

Additional file 7: Table S5. Lists of the volatile and non-volatile annotated
metabolites, classified according to the ANOVA analysis. The metabolites that
significantly varied according to the vintage or the year (p-value < 0.01) are
indicated as “1”, while the other as “0”. (XLSX 28 kb)

Additional file 8: Figure S1. PLS-DA score plot (A) and correlation
loading plot (B) of the HPLC-ESI-MS data set for samples classified according
to ripening stage. Stage 1: beginning of véraison; stage 2: pre-ripening;
stage 3: full maturity stage. PLS-DA score plot (C) and correlation loading
plot (D) of the HPLC-ESI-MS data set for samples classified according to
growing season. Blue: 2006; green: 2007; red: 2008. PLS-DA score plot (E)
and correlation loading plot (F) of the GC-MS data set for samples classified
according to growing season. Blue: 2006; green: 2007; red: 2008. Vineyards:
▼ = AM; ● = BA; ◼ = BM; ✦ = CS; ♦ = FA; ★ =MN; ▲ = PM. Groups of
metabolites are shown in different colors. ui = unidentified. (TIFF 2617 kb)

Additional file 9: Table S6. List of markers in the non-volatile metabolite
data set for the three geographical macrozones. a) ID based on the data set
in Additional file 5: Table S3; b) raw m/z of parent ion; c) retention time (RT)
in minutes; d) putative identification; e) class; aa: amino acids; ac:
anthocyanins; flav: flavonoids; fr: fragment; hb: hydroxybenzoic acids;
hc: hydroxycinnamic acids; oa: organic acids; pr: procyanidins; s:
sugars; st: stilbenes; ui: unidentified; f) marker type: molecules found
at low levels (<) and high levels (>) in the selected macrozone are
indicated; g) pcorr [1]; h) pcorr [2]. (XLSX 21 kb)

Additional file 10: Table S7. Macrozone-specific markers in the
non-volatile metabolite data set classified according to their chemical class
and macrozone relevance; the classification is the same as used in Fig. 3.
(XLSX 135 kb)

Additional file 11: Table S8. List of non-volatile markers for the seven
vineyards, divided by macrozone; a) Lake Garda (vineyards BA and CS); b)
Valpolicella (vineyards BM, FA and MN); c) Soave (vineyards AM and PM).
Each data set shows: a) ID based on the data set in Additional file 5:
Table S3; b) raw m/z of parent ion; c) retention time (RT) in minutes; d)
putative identification; e) class; aa: amino acids; ac: anthocyanins; flav:
flavonoids; fr: fragment; hb: hydroxybenzoic acids; hc: hydroxycinnamic
acids; oa: organic acids; pr: procyanidins; s: sugars; st: stilbenes; t: tannins;
ui: unidentified; f) marker type: molecules found at low levels (<) and
high levels (>) in the selected macrozone are indicated; g) cor (tp, x)
values; h) cov (tp, x) values. (XLSX 163 kb)

Additional file 12: Figure S2. Heat map of the laccase gene family,
showing transcriptional profiles. The heat map was generated with TMeV
v4.8.1 using the average expression level of three replicates. Data were
normalized based on the mean center genes/rows adjustment and
Pearson’s correlation was chosen as a statistical metric. The legend
indicates the enzyme class predicted by LacSubPred software as
described by Weirick et al. [21]. (XLSX 27 kb)

Additional file 13: Table S9. List of the markers for the volatile metabolite
data set for the three geographical macrozones and the seven vineyards
within each macrozone. a) Lake Garda (vineyards BA and CS); b) Valpolicella
(vineyards BM, FA and MN); c) Soave (vineyards AM and PM). (JPEG 115 kb)

Additional file 14: Table S10. Transcript data sets related to non-volatile
and volatile markers of the different vineyards according to the oCPLS2-DA
method. Microarray fluorescence intensities were downloaded from Gene
Expression Omnibus (GEO) using accession number GSE41633. Negative (<)
and positive (>) markers for each vineyard are indicated. (XLSX 328 kb)
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Additional file 15. Loading plots of several O2PLS-DA models
investigating the relationships between environmental and
vineyard features and metabolites detected by HPLC-ESI-MS
and GC-MS. Each feature and the relative statistical classes are indicated
in the plot. Groups of metabolites are shown in different colors
according to the legends. (PDF 394 kb)
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