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COMPETENT GENETIC-EVOLUTIONARY OPTIMIZATION OF WATER DISTRIBUTION 

SYSTEMS 

By 

Zheng Y. Wu
1
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2
, Member, ASCE 

 

ABSTRACT: A genetic algorithm (GA) has been applied to the optimal design and rehabilitation of a water 

distribution system. Many of the previous applications have been limited to small water distribution systems, 

where the computer time used for solving the problem has been relatively small. In order to apply genetic and 

evolutionary optimization technique to a large-scale water distribution system, this paper employs one of 

competent genetic-evolutionary algorithms  a messy genetic algorithm to enhance the efficiency of an 

optimization procedure. Maximum flexibility is ensured by the formulation of a string and solution representation 

scheme, a fitness definition and the integration of a well-developed hydraulic network solver that facilitate the 

application of a genetic algorithm to the optimization of a water distribution system. Two benchmark problems of 

water pipeline design and a real water distribution system are presented to demonstrate the application of the 

improved technique. The results obtained show that the number of the design trials required by the messy genetic 

algorithm is consistently fewer than the other genetic algorithms. 

 

Key Words: water distribution, optimization model, genetic algorithms, messy genetic algorithms, optimal 

design and rehabilitation. 
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INTRODUCTION 

Provision of adequate water supply service is an essential requirement for communities around the world. 

Tremendous amounts of capital are being spent on the design of new water distribution systems and the 

rehabilitation (or improvement) of existing networks in both developing and developed countries. Cost effective 

expenditure on the design and rehabilitation is essential to achieve a sufficient quality service due to an ever-

tightened budget. Even today, despite the availability of many research papers since the 1960s on the 

optimization of water distribution networks, the design of water distribution systems is still an approach of trial 
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and error improvement. An engineer uses judgement, based on the evaluation of - for example - the pressures at 

junctions from a computer hydraulic simulation, to determine which element sizes should be adjusted to further 

reduce the cost (Karmeli 1968). In the mid-1980s, Walski (1985) and Goulter (1987) both predicted that within 

the next decade (that was before 1997) water distribution optimization models should become everyday tools of 

practicing water engineers. In 1992, Goulter concluded that optimization still has not penetrated the water 

industry. As of today, the common use of optimization by the water industry still has not occurred. Although 

traditional mathematical optimization methods including linear, non-linear and dynamic programming provided 

efficient computation procedures for achieving a lower cost solution, the methods suffered from some 

disadvantages such as (1) ineffective at reaching the least cost solution due to the zero-gradient optimality criteria 

that easily trapped a search process at a local optimal solution; (2) lack of flexibility at handling discrete design 

variables and optimizing a partial network that is often required for many practical engineering designs and (3) 

complexity of implementing and using the technique. These methods have often required for a sophisticated 

system analysis and careful (also time consuming) input data preparation. As a result, practicing engineers have 

been cautious to accept the traditional approach for the optimization of a water distribution system. 

The introduction of genetic and evolutionary algorithms (GA) for the optimization of the design of a 

water distribution system (Murphy and Simpson 1992; Simpson et al. 1994; Dandy et al. 1996; Savic and Walters 

1997; Wu and Simpson 1996, 1997 and many others) takes a different approach. GA optimization incorporates a 

hydraulic network solver seamlessly within an optimization process. Thus all the sophistication features of the 

latest simulation modeling techniques, including water quality aspects, can be an integral part of the genetic 

algorithm technique. A hydraulic network solver evaluates the hydraulic performance of each design trial that is a 

member of the genetic algorithm population of network designs. The network hydraulic information is then 

passed back to the genetic algorithm module for computation of the fitness of the design. The use of hydraulic 

simulation within the genetic algorithm formulation is the real strength of the technique. As an outcome, genetic 

algorithm optimization offers the promise of easily accessible optimization of water distribution systems. 

However, many previous applications of a genetic-evolutionary algorithm has been limited to a small network, 

where the computer time of searching for the optimal or near optimal solutions and solving for the flow and 

pressure conditions of each design trial has been relatively small. In order to apply a genetic-evolutionary 

optimization technique to a large-scale water distribution system, the overall computation efficiency for 

achieving the least cost design solution needs to be improved. Thus a more efficient genetic algorithm approach 
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is needed for solving the optimization problem. This paper describes a competent approach to the genetic 

algorithm optimization of a water distribution system. The improvement results from: 

 application of the messy genetic algorithm (Goldberg et al. 1989) that significantly improves 

the optimization efficiency;  

 formulation of the genetic algorithm string and solution representation scheme, and the fitness 

definition that facilitate the implementation of a genetic algorithm optimization model for 

handling any combination of system elements; 

 integration of the genetic algorithm with a hydraulic network solver that enables the solution 

method to optimize all the system components including pipes, tanks, valves and pumps under 

steady state or extended period simulations (EPS). 

The paper starts with a brief overview on the traditional optimization techniques and a more detailed 

review on genetic-evolutionary optimization approaches, followed by the formulation of a comprehensive 

optimization model, genetic algorithm string and solution representation scheme together with a fitness 

definition. Furthermore, the key features of a messy genetic algorithm are described in comparison with other 

genetic algorithms, along with three case studies presented to demonstrate the application of the improved 

methodology. Finally, conclusions are drawn from the theoretical formulation and the solid numerical 

experiments.  

 

LITERATURE REVIEW 

Optimization of a water distribution system has been a subject of considerable research since the 1960s. Various 

researchers (Walski 1985; Goulter 1987; Walters 1988; Lansey & Mays 1989a and Goulter 1992) have made 

comprehensive reviews on the traditional methods. Early research on the optimization of water distribution 

systems used a linear programming technique. The applications were to a branched system where flows were able 

to be explicitly determined for each pipe (Karmeli et al. 1968). Alperovits and Shamir (1977) proposed a linear 

programming gradient method (LPG) for optimization of a looped water distribution system. The LPG method 

has been improved by a number of researchers. Most recently, Eiger et al. (1994) extended the LPG method by 

applying a non-smooth optimization technique and duality theory. A method was developed for the computation 

of a tight lower bound to the global optimal solution. The optimality of a solution was measured by the difference 

between the tight lower bound and the solution. Thus the lower bound served as an optimality (stopping) criterion 

for the optimization of water distribution systems. The efficacy of the improved LPG method has been 



 4 

demonstrated, however, it involves a considerable amount of mathematical sophistication. Other traditional 

optimization techniques including direct search techniques, dynamic programming, integer programming, and 

enumerative methods were applied to the optimal design of a water distribution system. A detailed review was 

given by Lansey and Mays (1989a) on these traditional optimization techniques. Su et al. (1987) integrated a 

generalized reduced gradient (GRG) technique with a hydraulic network solver KYPIPE. Lansey and Mays 

(1989b) improved the technique by using an augmented Lagrangian method for handling the design constraints. 

More recently, Kim and Mays (1994) developed a mixed-integer nonlinear programming formulation for optimal 

rehabilitation of water distribution systems. Integer variables (taking a value of either 0 or 1) were used for 

representing pipe rehabilitation actions (e.g. replacement, cleaning and relining). The other variables such as pipe 

diameters and pump horsepower were treated as continuous variables. The problem was solved by a solution 

methodology integrating an implicit enumeration scheme for the integer variables, the GRG and KYPIPE for 

optimizing the continuous variables of pipe diameter and pump horsepower. 

Genetic algorithms (Goldberg 1989) are a general search method based on the principles of natural 

evolution and biological reproduction. It randomly initiates a population of solutions or individuals. Each 

individual is represented by either alphabetic or binary string that encodes one possible solution. The number of 

bits in one string is defined as the string length. The strings representing all the possible solutions for a specific 

problem have an identical length or so-called a problem length that remains unchanged during the search process. 

This type of genetic algorithms processes fixed-length strings during a GA optimization and is referred as to a 

“simple genetic algorithm”. Application of a simple GA to the optimal design of water distribution systems was 

developed in the early 1990s (Murphy and Simpson 1992). In this early work, a binary string was used to 

represent the decision variables of (1) pipe diameters for new pipes and duplicated pipes parallel to existing pipes 

and (2) rehabilitation actions including cleaning a pipe and laying a parallel pipe to an existing pipeline. The 

simple genetic algorithm using roulette wheel selection, one-point crossover and bit-wise mutation was applied to 

determine the least cost combination of pipe diameters and rehabilitation actions for optimal expansion and 

rehabilitation of a small two-reservoir fourteen-pipe looped water distribution system. The optimal solution was 

subject to just the minimum junction pressure requirement under three demand loading cases including a peak 

hour demand loading case and two fire flow demand conditions. The GA found the optimal solution for a set of 

diameters of the new and duplicated pipes and the options of cleaning the existing pipes. The performance of the 

simple GA was compared with a complete enumeration and other optimization methods (Simpson et al. 1994). 

The GA based approach was found to outperform other optimization methods at solving this small problem. It 
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was observed, however, that the simple GA optimization result was sensitive to the GA parameters and operators. 

Simpson and Goldberg (1994) investigated factors that influence the performance of the simple GA in finding the 

optimal solution for the two-reservoir looped network problem. They concluded that the use of the tournament 

selection scheme and an adequate population size were the most critical aspects of applying a simple GA to the 

optimal design of water distribution systems. Dandy et al. (1996) improved the GA by using (i) fitness scaling; 

(ii) creeping mutation and (iii) Gray coding (instead of binary coding), and solved the New York City Tunnel 

water supply network problem. The improved GA found the least cost solution of $38.8 million. The main 

difficulty associated with the improved simple GA (as with the simple GA) included the considerable effort 

required to tune the GA parameters (population size, probability of crossover and mutation) to find the range of 

low cost solutions. It took dozens of runs to find the optimal solution. In fact, the lowest cost solution of $38.80 

million was found infrequently by the improved GA. Savic and Walters (1997) integrated a simple GA with the 

multi-quality EPANET hydraulic network solver (Rossman 1994) and applied to three benchmark problems in 

literature. They identified that the optimal solution was sensitive to the coefficients in Hazen William formula 

used in hydraulic simulation. More recently, Lippai et al. (1999) linked EPANET with a number of simple GA-

based optimizers for the optimization of a water distribution system.  

A simple genetic algorithm represents a solution space with the strings of an identical problem length. It 

is a tidy representation of a solution space in string length. Goldberg et al. (1989) proposed a competent genetic-

evolutionary algorithm  the messy genetic algorithm (mGA) using a variable-length string representation. The 

length of mGA strings changes not only over generations, but also varies from one string to another in one 

population. It forms a type of messy representation of a solution space. It was found that the messy representation 

of a solution space is more effective than the tidy representation for the optimization of a water distribution 

system (Wu and Simpson 1996, 1997; Simpson & Wu 1997; Wu et al. 2000). Halhal et al. (1997) proposed a 

similar approach called the structured messy GA and applied to maximizing the benefit of water distribution 

system rehabilitation subject to a limited available budget. The structured messy GA retained partial features of 

the messy GA by Goldberg et al. (1989). It started with a population of short strings of the same length. The short 

strings were concatenated over generations. Thus the string length increased equally over generations until it 

reached a prescribed length. The same length was attained for all the strings within one population. This allowed 

the simple genetic algorithm operators to be applied to reproduce next generation rather than the messy genetic 

algorithm operators. The strength of the messy genetic algorithm, however, is the versatile variation of the string 

length not only within one population but also during an artificial evolution process. It is the variable-length 
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representation, together with the messy GA operators that empowers an artificial evolution process to identify the 

good clusters of string bit patterns that are contained in good solutions. Goldberg et al. (1989) demonstrated that 

the messy genetic algorithm was able to locate optimal solutions in the search space that proved difficult-to-find 

using a simple genetic algorithm. In this paper, we explore the application of full features of the messy genetic 

algorithm to enhance the capability of the genetic-evolutionary computation approach to the optimal design and 

rehabilitation of a water distribution system. Performance and working mechanics of the messy GA are also 

compared to the fixed-length genetic algorithm paradigms.   

 

A DESIGN AND REHABILITATION FORMULATION 

Design of a water distribution system is a multi-phase procedure. Walski (1995) classified it into four stages such 

as (1) master planning; (2) preliminary design; (3) subdivision design and (4) rehabilitation. The optimization 

model presented in this paper deals with the problems of the last two categories. For a given network layout, 

demand loading conditions and an operation policy, the optimal design and rehabilitation of a water distribution 

system is to determine the least cost combination of (1) new pipe diameters )(D


, (2) pipe rehabilitation actions 

)(E


, (3) pump capacities )(P


, (4) tank sizes )(T


, (5) valve sizes  V )(


and setting )(VS . A new pipe can be 

an expansion (subdivision) to, a replacement of or a parallel pipe (duplication) to an existing pipeline. The total 

cost of a design and rehabilitation solution is minimized while satisfying a set of prescribed system criteria. 

 

Cost Objective Function 

Total cost of a network design and rehabilitation is the sum of the cost associated with all the components being 

designed and rehabilitated. Let the total numbers of design pipes, pumps, tanks, valves and rehabilitation pipes be 

DPP, DPM, DTK, DVV, RPP respectively; and let the costs associated with each group be (i) ck(dk) = cost per 

unit length of the k-th pipe diameter selected from a set of available pipe diameter
0

mD of DC choices; (ii) ck(pk) = 

cost of the k-th pump capacity selected from a set of available pump capacity
0

mP of PC choices; (iii) ck(tk) = cost 

of the k-th tank size selected from a set of possible tank size 
0

mT of TC choices; (iv) ck(vk) = cost of the k-th 

pressure regulating valve selected from a set of possible valve size
0

mV of VC choices; and (v) ck(ek, dk) = cost per 

unit length of a pipe for the k-th rehabilitation action ek chosen from a set of possible action
0

mE of EC choices and 

corresponding existing pipe diameter dk. Thus the cost objective function is given as: 
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)p(cL)e,d(cL)d(c)P,E,D(C k

DPM

1k

k

RPP

1k

kkkkkk

DPP

1k

k 





  (3) 

 

where Lk = length of the k-th pipe. Each of decision variables P,E,D


is to select its possible values from a 

variable choice table or a set of available component sizes (or capacities), given as: 

 

 DCmDdk mk ,...,1,, 0       (4) 

 ECmEek mk ,...,1,, 0       (5) 

 PCmPpk mk ,...,1,, 0       (6) 

 TCmTtk mk ,...,1,, 0       (7) 

 VCmVvk mk ,...,1,, 0       (8) 

 

A design trial solution is analyzed by calling a hydraulic network solver in a steady state or extended period 

simulation (EPS). The hydraulic simulation solves a set of quasi-linear equations and ensures the satisfaction of 

the implicit system constraints corresponding to the conservation of flow continuity at nodes and the energy 

conservation around loops. The hydraulic system responses are checked against a number of the constraints that 

are prescribed for a feasible design and rehabilitation solution.  

 

Junction Pressure Constraints 

Junction pressure is often required to maintain greater than a minimum pressure level to insure adequate water 

service and less than a maximum pressure level to reduce water leakage within a system. Thus junction pressure 

constraints are given as: 

 

NDMjNJitHtHH jijiji ,...,1;,...,1,,)( max

,,

min

,    (9) 
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where )(, tH ji  = hydraulic head at junction i for demand loading case j at time t; NJ = number of junctions in 

system (excluding fixed grade junctions); 
min

, jiH , 
max

, jiH  = minimum required and maximum allowable hydraulic 

pressures at junction i for demand loading case j; and NDM = number of demand loading cases. 

 

Pipe Flow Constraints 

A design and rehabilitation solution is also constrained by a set of pipe flow criteria that are often given as a 

maximum allowable flow velocity and a maximum allowable hydraulic gradient or slope, given as: 

 

NDMjNPitVtV jiji ,...,1;,...,1,,)( max

,,     (10) 

NDMjNPitHGtHG jiji ,...,1;,...,1,,)( max

,,     (11) 

 

where )(, tV ji  = flow velocity of pipe i for demand loading case j at time t; 
max

, jiV  =  maximum allowable flow 

velocity of pipe i for demand loading case j; NP = number of constraint pipes in system; )(, tHG ji  = hydraulic 

gradient (slope) of pipe i for demand loading case j at time t and 
max

, jiHG  =  maximum allowable hydraulic 

gradient of pipe i for demand loading case j. 

 

Pump Capacity Constraints 

A pump can be designed by its capacity of a useful horse power Pk that is often required not smaller than a 

minimum horse power Pmink or greater than a maximum horse power Pmaxk, thus pump constraints are given as:  

 

 Pmink  Pk   Pmaxk   k = 1, …, DPM   (12) 

 

Valve Setting Constraints 

During the optimization process, a valve setting can be optimized within the range of a minimum required and a 

maximum allowable setting. The constraint for a valve setting is: 

 

 VSmink   VSk  VSmaxk k = 1, …, DVV   (13) 
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where VSmink represents the minimum required valve setting for valve k, VSk designates the valve setting for 

valve k and VSmaxk denotes the maximum valve setting for valve k. 

 

Tank Flow Constraints 

When the size of a tank is taken into account as a design variable, a flow balance must be maintained for a 

sufficient supply to a water distribution system. Thus a tank design is constrained by: 

 

NDMiDTKkVtankVtankV k

out

ki

in

ki, ,...,1;,...,1,,    (14) 

 

where 
in

kitankV ,  = amount of the inflow to tank k under demand loading case i; 
out

kitankV ,  =  amount of the 

outflow from tank k; Vk = flow balance tolerance of tank k. The optimization problem formulated above is to be 

solved for the least cost solution by a genetic algorithm optimization technique.  

 

A GENETIC ALGORITHM FORMULATION 

A design and rehabilitation solution is represented as a string during a genetic algorithm optimization while the 

string is evaluated by its fitness, a surrogate measure of the solution optimality. Determining a string 

representation and formulating its corresponding fitness to an objective function are two critical steps to apply a 

genetic algorithm to solving a network optimization problem.  

 

String and Solution Representation 

A genetic algorithm string and solution representation is to determine (1) the type of strings; (2) the number of 

bits to represent each decision variable and (3) the mapping that converts a string to a possible solution. A string 

can be consisted of binary bits, decimal digits or alphabets. Let b be the number of one-bit possible values for a 

particular string type, for example, b = 2 for binary strings and b = 10 for decimal strings. The number of the bits 

that are needed to encode all the possible solution values for one decision variable can be calculated as:  

 











b

Nchs
Nbit

log

log
       (15) 
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 where Nbit denotes the number of the bits in a sub-string representing one decision variable,   is the ceiling 

operator that calculates the nearest integer greater than the operand and Nchs designates the number of possible 

solution values for the variable to choose from. For example, Nchs = DC given as Eq.(4) for selecting a possible 

pipe size. A string, representing a possible solution to the design and rehabilitation of a specific network, is the 

concatenation of the sub-strings that designate all the decision variables to the system. 

 To evaluate the fitness of a string, the string must be converted into a design solution by mapping a 

string value onto a variable value. For each type of design variables, a choice table, designated by Eq.(4)-(8) for a 

specific problem, is often given for a variable to look up a corresponding solution value according to its string 

value. Assuming one sub-string for one variable is represented as a1 a2 ,……an , the value of the sub-string can be 

calculated as: 

 





Nbit

n

n

ni baS
1

1
       (16) 

 

Then, the sub-string is converted to a solution value by mapping the string value as above to index m of the 

variable choice table given as Eq.4 – 8, namely: 

 






Nchs

S
m

i
 

NchsSif

NchsSif

i

i




     (17) 

 

By using this string and solution representation, a genetic algorithm can be applied to solving the network 

optimization problem formulated earlier. It provides a unified computation framework for genetic-evolutionary 

optimization of a water distribution system and is also applicable to many other discrete optimization problems. 

An example is given below to illustrate the string and solution representation scheme applied to the design 

variables of pipe sizes and rehabilitation actions (cleaning and duplicate pipes). Application to the other types of 

design variables such as tank sizes, pump capacities and valve settings is straightforward.  

A water distribution system, studied by Simpson et al. (1994) as shown in Figure 1, consists of two 

reservoirs and fourteen pipes. There are five new pipes (DPP = 5) to be added to the system, three existing pipes 

(RPP = 3) to be rehabilitated by taking one of the three actions as given in Table 1. The actions include cleaning, 
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duplicating (laying a parallel pipe) and leaving a pipe as it is. Table 2 gives eight commercially available pipe 

sizes that can be selected from for a new and duplicated pipe. The task is to determine the least cost solution or 

combination of rehabilitation actions and pipe sizes while the junction pressures meet the minimum required 

pressure under three demand loading conditions. Binary strings (i.e. b = 2) are used for representing a design 

solution. To encode eight possible pipe sizes (Nchs = DC = 8), the number of binary bits required for one design 

variable of a new pipe diameter is Nbit = 3 as calculated by Eq.(15). Similarly, two binary bits are needed to 

represent three rehabilitation actions (Nchs = EC = 3), for each of three existing pipes to be rehabilitated. Thus 

the total length of a string for this example problem is 30 bits. Figure 2 shows one string representation of a 

solution for this example network. The string can be converted to a design and rehabilitation solution. For 

instance, sub-string 101 for a new pipe gives a string value of 5 by Eq. (16), by mapping the string value of 5 to 

the index of the diameter choice Table 2, a corresponding pipe diameter of 407 mm is assigned to the sub-string 

101. For this example, a 2-bit binary sub-string provides four choices, one string value (i.e. 3) is redundant and is 

set to the last rehabilitation action of cleaning a pipe. The sample string in Figure 2 is converted into a design 

solution, as given in Table 3, by mapping a sub-string value to the index of a pipe diameter or a rehabilitation 

action. For a pipe taking the rehabilitation action of cleaning a pipe, the pipe size remains the same but the 

roughness coefficient needs to be updated to reflect a cleaned pipe condition. In this way a string is converted 

into a design and rehabilitation solution. A fitness value is to be assigned to the string as a surrogate optimality 

measure of the corresponding design solution. 

 

Fitness Evaluation 

In a genetic algorithm, fitness is introduced as the performance measure of a string or an individual adapting to 

an objective landscape. A genetic-evolutionary algorithm searches for the best string by mimicking Darwin’s 

natural selection principle of survival of the fittest. Thus string fitness is maximized during a search process and 

accordingly the best string is the string that gains the maximum fitness value. However, the cost associated with a 

network design and rehabilitation is to be minimized to search for the least cost solution. Therefore a fitness 

function needs to be defined such that a genetic-evolutionary algorithm equivalently minimizes the cost objective 

function while the fitness is maximized. The fitness of a string corresponding to a solution can be formulated in 

many ways, the fitness definition by Wu and Larsen (1996) has been used as: 
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)P,E,D(C

)P,E,D(C
1

nn

NN,...,1nn

nn

nn

Max






      (18) 

 

where NN = the population size; )P,E,D(Cnn


 = the cost of a design and rehabilitation solution nn at current 

generation. This has a desirable property that the fitness is in the range 0 10 nn .  and that the cost 

)P,E,D(C


 will be minimized while the fitness is maximized over generations. The optimization procedure is 

undertaken by using a messy genetic algorithm. 

 

MESSY GENETIC ALGORITHMS 

The working mechanics of a genetic algorithm is derived from a simple assumption (Holland 1975) that the best 

solution will be found in the solution region that contains a relatively high proportion of good solutions. A set of 

strings that represent the good solutions attains certain similarities in bit values. For example, 3-bit binary strings 

001, 111, 101 and 011 have a common similarity template of **1, where wild star * denotes don’t-care symbol 

taking a value of either 1 or 0. The four strings represent four good solutions and contribute to the fitness values 

of 10, 12, 11 and 11 to a fitness function of 310),,( 21321

x
xxxxxf  , where x1, x2 and x3 directly takes 

a bit value as an integer from left to right. In general, a short similarity template that contributes an above-

average fitness is so-called a building block. Building blocks are often contained in short strings that represent 

partial solutions to a specific problem. Thus searching for good solutions is to uncover and juxtapose the good 

short strings that essentially designate a good solution region and finally lead a search to the best solution. 

Goldberg et al. (1989) developed the messy genetic algorithm as one of competent genetic algorithm 

paradigms by focusing on improving GA’s capability of identifying and exchanging building blocks. The first-

generation of the messy GA explicitly initializes all the short strings of a desired length k, where k is referred as 

to the order of a building block defined by a short string. For a binary string representation, all the combinations 

of order-k building blocks requires a number of n
l
k

k 

 

2  initial short strings of length k for an l-bit problem. 

For example, as shown in Figure 3, the initial population size of short strings by completely enumerating the 

building blocks of order 4 for a 40-bit problem is more than one million. This made the application of the first-

generation messy GA to a large-scale optimization problem impossible. This bottleneck has been overcome by 
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introducing a building block filtering procedure (Goldberg et al. 1993) into the messy GA. It speeds up the 

search process and is called a fast messy GA. 

The fast messy GA emulates the powerful genetic-evolutionary process in two nested loops, an outer 

loop and an inner loop. Each cycle of the outer loop, denoted as an era, invokes an initialization phase and an 

inner loop that consists of a building block filtering phase and a juxtapositional phase. Like a simple genetic 

algorithm, the messy GA initialization creates a population of random individuals. The population size has to be 

large enough to ensure the presence of all possible building blocks. Then a building block filtering procedure is 

applied to select better-fit short strings and reduce the string length. It works like a filter that “bad” genes not 

belonging to building blocks are deleted so that the population contains a high proportion of short strings of 

“good” genes. The filtering procedure continues until the overall string length is reduced to a desired length k. 

Finally, a juxtapositional phase follows to produce new strings. During this phase, the processed building blocks 

are combined and exchanged to form offspring by applying the selection and reproduction operators. The 

juxtapositional phase terminates when the maximum number of generations is reached. Thus the cycle of one era 

iteration completes. A summary of the steps in a messy GA is given in Figure 4. The length of short strings that 

contains desired building blocks is often specified as the same as an era, starting with one to a maximum number 

of eras. Thus preferred short strings increase in length over outer iterations. In another words, a messy GA 

evolves solutions from short strings starting from length one to a maximum desired length. This enables the 

messy GA to mimic the natural and biological evolution process that a simple or one cell organism evolves into a 

more sophisticated and intelligent organism. Goldberg et al. (1989, 1993) has given the detail analysis and 

computation procedure of the messy GA. The key components and features of the messy GA are outlined as 

follows. 

 

Variable-length string 

Unlike a simple GA, a messy GA represents a gene by a pair of gene locus and gene value, noted as (gene locus, 

gene value), in a string of variable length. A gene locus is the location or sequential order of a gene bit in a full-

length string. For binary string representation, each gene bit takes a value of either 0 or 1. For instance, the 

sample solution string given in Figure 2 is represented as a messy GA string given as: 

(1,1), (2,1), (3,1), (4,1), (5,0), (6,1), (7,1), (8,1), (9,0), (10,0), (11,0), (12,1), (13,0), 

(14,1), (15,0), (16,0), (17,0), (18,1), (19,1), (20,1), (21,0), (22,1), (23,1), (24,0), (25,1), 

(26,1), (27,1), (28,0), (29,1), (30,0) 
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where the first number within a bracket is the gene locus the sequential order of a bit in the string and the second 

number refers to the bit value (i.e. 1 or 0). It is the locus that enables the messy GA to locate a bit value in a 

variable-length string that can be under or over specified. A under specified string is the string with some missing 

bits while an over specified string is the string with multiple bit values. For example, a 3-bit string can be 

represented either by (1,1), (3,0) or by (1,1), (2,1), (3,0), (3,1). The former coding set, containing only two pairs 

of gene representation for bit 1 and 3, is called an under-specification because bit 2 is missing. An under 

specified string is evaluated by filling the missing bit with a corresponding bit value from a full-length string  a 

competitive template. An initial competitive template can be randomly generated and replaced by the best string 

found in later generations. The latter coding set, consisting of four pairs of gene representation, is called an over-

specification because more than one value is given for bit 3. A redundant bit value is removed by following a 

first-come-first-served rule scanning from left to right. The scanning rule together with a full-length competitive 

template enables the messy GA to evaluate both under and over specified strings. It provides the messy GA a 

maximum flexibility at varying the string length to uncover better-fit short strings  building blocks. 

 

Building blocks filtering 

The power of a genetic algorithm is its capability of searching for and grouping together building blocks  short 

strings (or partial solutions) with greater (or above-average) fitness. The messy GA emphasizes on uncovering 

building blocks before grouping them together for a better solution. After generating an initial population of 

strings with a problem length of l, a messy GA identifies building blocks of a certain length (or order) by 

randomly deleting gene bits in a string. The length of the string is subsequently reduced to a desired length. The 

process of detecting good building blocks is called building block filtering.  

Building block filtering offers a way of gradually detecting building blocks of order-k from the strings of 

l'-length (l'  l). During this phase, a string is first selected by a thresholding selection (explained in a later 

section), then the genes are randomly deleted to reduce the string length and the new string with the remaining 

genes is evaluated. As given in Figure 4, an iteration of selecting strings and deleting genes continues until the 

string length is reduced to a desired order of building blocks. The gene deletion rate, the number of genes being 

deleted in each iteration of a building block filtering loop, has to be chosen such that it is on average less than the 

rate at which better strings get more copies by selection. Good results have been obtained for the numerical 

experimental testing of the fast messy GA by using a deletion rate of 0.5 (Goldberg et al. 1993). It means that 50 
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percent of the current genes are randomly deleted from the selected strings, which reduces the string length to just 

half of the previous string length. These shortened strings are then evaluated and the same procedure of the 

selection and gene deletion are applied until the string length is near the order k of the required building blocks. 

 

Thresholding selection 

Since the messy GA allows variable length strings to be processed, comparing two strings without a gene bit from 

any common gene locus or bit tag is meaningless. For example, for a 5-bit problem, the strings ((1,1) (2,0)) and 

((3,1) (5,0) (4,1)) can be selected to participate in a tournament competition, but comparing both strings does not 

make a sense because there are no bits specified for the same locus. Thresholding selection was introduced to 

ensure that strings compete with each other only when they contain some genes from the same gene locus or with 

the same tags. A similarity measure  is used to denote the number of common genes in two strings. In practice, a 

tournament selection is held, where two strings are allowed to compete with each other if the number of  genes 

from the matching tags is greater than a prescribed threshold value given as (Goldberg et al. 1989): 

 

   






l l

l

1 2
       (19) 

 

where l1 = the length of the first string, l2 = the length of the second string and l = the problem length. For 

example, for a 10-bit problem (l = 10), string ((1,0) (5,0) (3,1)) (l1 = 3) and string (((1,1) (3,0) (5,0) (6,1)) (l2 =4) 

can be selected, a threshold value  = 12/10 = 2 is required for the two strings to participate in tournament 

selection. The number of the common genes in the two strings is 3, greater than the required threshold number of 

genes, thus they are allowed to compete each other by the thresholding selection. 

 

Cut and splice operators 

The crossover operator used in a simple GA cannot be applied to variable length strings in a messy GA. Two 

operators, cut and splice, have been designed and are used for a messy genetic reproduction. Cut acts to cut a 

chromosome into two, while splice links or concatenates two chromosomes to form one individual. If cut and 

splice are called in turn and applied to two strings, both operators work in a similar way to one point crossover 

operator in a simple genetic algorithm. The cut operator is activated by the cut probability given as: 
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  Pc = Pk( - 1)        (20)  

 

where P
k
 is the specified bit-wise cut probability and  is the length of the string. The splice is initiated by a 

prescribed probability Ps that is taken as a constant value for the messy GA optimization. The cut probability for 

a string is defined as a linear function of a string length as above. It increases as a string length increases. During 

the early stages of a juxtapositional phase, strings are short, and the cut probability is low, consequently a cut 

operation is unlikely to be invoked. A splice operation is more likely to be applied at this stage. Thus strings 

grow in length. However, the longer a string grows, the higher the cut probability becomes and the more likely 

the string is cut. The length of strings remains within a certain range when a cut probability is about the same as a 

splice probability. 

 

INTEGRATED SOLUTION METHODOLOGY 

The optimal design and rehabilitation problem is solved by seamlessly integrating the messy GA with a hydraulic 

network solver EPANET (Rossman 1994). The messy genetic algorithm is employed as a solution seeker while 

EPANET is used as a hydraulic network simulator solving the system hydraulic equations for each trial. First of 

all, a string is converted to a design and rehabilitation solution by following the string and solution representation 

scheme, namely mapping the sub-string values to the index of possible decision choices by Eq.(12) and (13). The 

network solver may be called to perform hydraulic simulations for single or multiple demand loading conditions. 

Hydraulic results such as junction pressures, flow velocities and hydraulic gradients (slopes) are then passed back 

to the genetic algorithm module and checked against the design constraints given by Eq.(7)-(10). Subsequently, 

the maximum design constraint violation can be found for all demand loading cases. The actual cost of a design 

and rehabilitation trial is calculated by Eq.(3). In addition, a penalty cost is computed when a design constraint is 

violated. The total cost for the solution is the sum of an actual design and rehabilitation cost and a penalty cost. 

Finally the fitness for the string is given by Eq.(14) using the information of the total cost. The messy genetic 

algorithm, employing the fitness as surrogate measure of solution optimality, searches for the optimal design and 

rehabilitation solution. 

 

CASE STUDIES 
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The messy genetic algorithm optimization methodology is applied to three case studies, a two-reservoir system, 

the New York City tunnels problem in literature and one real water distribution system in Morocco. The results 

obtained are presented below. 

 

Two-reservoir network 

As described earlier, the design task for a two-reservoir network is to determine the least cost combination of 

rehabilitation actions for three existing pipes and pipe diameters for five new pipes while the junction pressures 

are required to satisfy the minimum pressure. Previous studies (Simpson et al. 1994; Simpson & Goldberg 1994) 

applied the simple genetic algorithm and identified the global optimal solution of $1.7503 million for the two-

reservoir network problem. The same optimal solution was found by using the messy GAs. The performance of 

the messy GA and the simple GAs is summarized and compared by the statistical results over ten computer runs. 

Table 4 shows that the messy GAs found the lowest cost solution (global optimum) in each of the 10 runs with 

different random seeds. The original messy GA using building block enumeration required only one third to half 

of the evaluation numbers of the simple GA using roulette wheel selection (Simpson et al. 1994), and also less 

than the simple GA with tournament selection (selection pressure s = 2). Simpson and Goldberg (1994) observed 

that increasing tournament pressure (s = 5) for the simple GA could reduce the number of evaluations, and thus 

improve the search efficiency, but too much pressure (s =20) might lead the search to a local optimum. Overall, 

the fast messy GA, using building block filtering, has further reduced the number of the evaluations and has been 

shown the most efficient at solving this small problem. 

 

 The New York city tunnels problem 

The New York city water tunnels problem was posed by Schaake and Lai (1969). Figure 5 shows the layout of 

the system as in 1969. It consists of one water supply source at Hillview reservoir, and two main city tunnels 

named City Tunnel No. 1 and City Tunnel No. 2. The objective is to determine if a new pipe is to be laid parallel 

to an existing pipe and the diameter of a parallel pipe while the system is required to provide minimum hydraulic 

grades. This problem has been previously studied by a number of researchers in literature (Gessler 1982; Bhave 

1985; Morgan and Goulter 1985; Quindry et al. 1981; Fujiwara and Khang 1990; Savic and Walters 1995; 

Dandy et al. 1996 and Lippai et al. 1999). The messy GA approach was applied to demonstrate its performance 

to the optimization of the New York city water tunnels system. A binary coding scheme has been used for the 

messy GA optimization. Four bits providing sixteen choices were used to code the possible sizes for each pipe. 
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There are fifteen choices of new pipe sizes in Table 9. The sixteenth choice was encoded as 0000 for a parallel 

pipe of zero-diameter namely leaving an existing pipe as it was. A total of eighty-four binary bits were used to 

represent the New York water tunnels optimization problem. 

 In order to compare the performance of the messy GA with the improved GA results the same Hazen-

Williams equation as used by Dandy et al. (1996) was adopted as: 

 

 h L
Q
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Df 
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
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4 8704.

.

.
      (21) 

 

The messy GA was run several times with different penalty factors applied for the constraint violation of the 

minimum required hydraulic grades. A set of low cost solutions obtained by the messy GA is compared with the 

results by the improved GA (Dandy et al. 1996) in Table 5. The corresponding diameters for each solution are 

given in Table 6. It shows that the cost of the optimal or near optimal solutions found by the messy GA are very 

similar to the improved GA, however, the messy GA is more efficient than the improved GA at searching for the 

lower cost design solutions. The improved GA required an average of 143,790 evaluations over five GA runs to 

reach the optimal or near-optimal solution. In contrast, the messy GA evaluated an average of 48,427 solutions 

over five messy GA runs to achieve similar solutions. The number of evaluations required by the messy GA is 

about one third of the evaluations required by the improved GA for this case study. Figure 6 compares a typical 

convergence rate of the messy GA solution with the improved GA for the optimization of New York city tunnels 

problem. It is demonstrated that the messy GA approach has significantly improved the computation efficiency 

for this particular case study.  

 

A Moroccan network 

A real water distribution system, as shown in Figure 7, is for a town of 50,000 inhabitants in Morocco. This 

network consists of one hundred and fifteen nodes, one hundred and fifty-eight existing pipes to be rehabilitated 

and nine new pipelines to be designed (or sized) for the system. Four possible rehabilitation actions, including 

replacing a pipe, relining a pipe, duplicating a pipe and leaving a pipe as it is, can be applied to the rehabilitation 

of the existing pipes. The problem has been studied by Hahal et al. (1997) using a multi-objective genetic 

algorithm approach. The fast messy genetic algorithm has been applied to solving this problem for a set of lower 

cost solutions.  
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The optimization of the Moroccan network has been specified as determining the least cost solution of 

the rehabilitation action for each of one hundred and fifty-eight existing pipes and the diameter for each of nine 

new pipes while satisfying the minimum required junction pressure of 20 meters. Apart from the cost associated 

with the rehabilitation actions, a repair cost is assumed to the pipe without taking an actual rehabilitation action 

or being assigned the action of leaving the pipe as it is. It is also assumed that no annual repair cost occurs to a 

new pipe during its first 10 years, as a new pipe is usually under warranty for this period of time. The repair cost 

is calculated as follows (Hahal et al. 1997). 
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where crep(j) = repair cost of a breakage for pipe j; r = interest rate; tp = present year; tr = year tp + 10; and J(t) = 

breakage rate in year t, which is given as: 

 

  
t

ro bJtJ )1()(        (23) 

 

where Jo = break rate in year 0 (break/km/yr); br = break rate growth coefficient and t = time in years. 

The messy GA used a binary representation for solving the optimization of the Moroccan network. Two 

bits have been used for coding the four rehabilitation actions and three bits have been used for coding the eight 

pipe sizes for each of 158 existing pipes. Three bits have been used for coding the eight pipe sizes for each of the 

nine new pipes. Thus 817 binary bits are used for representing one solution of the Moroccan network. A number 

of different penalty factors were used for the optimization of the Moroccan network. Table 7 summarizes the 

least cost rehabilitation solutions for eight different penalty factors. The results show that there are slight 

differences in cost among the lower cost solutions obtained by using penalty factors from $550,000 to $750,000 

per meter of the excess of a junction pressure head. The greater the penalty factor that was used in a messy GA 

run, the greater the cost of the best solution was found. This was due to the large penalty factor that forced the 

genetic algorithm search towards the feasible solution region. The genetic algorithm operations tended to 

reproduce more solutions within the feasible solution region than the infeasible region. It helps to ensure the 

feasibility of the optimal solution, but requires more evaluations to reach the optimal solution as shown in Table 
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8. However, the different optimal solutions provide engineers and/or decision-makers with more options to 

choose the optimal rehabilitation strategy by using other non-quantifiable engineering criteria.  

A simple GA using binary strings, tournament selection (S = 5), uniform crossover and mutation was 

also applied to solving this problem. It was noticed that the simple GA was hardly able to find a good solution on 

such a large-scale optimization problem. The simple GA was run with a population size of 1500 and a maximum 

generation of 5000. The best solution of about $6.5 million was found at the first of 300 generations and hardly 

improved to the end of 5000 generation. Figure 8 gives a comparison of the convergence rates of the simple GA 

with the messy GA. It shows that both the messy GA and the simple GA start with a similar cost of initial design 

solutions, but the messy GA rapidly improved the design and rehabilitation solutions from about $9.0 million to 

near-optimal solution of approximately $1.1 million over 600,000 evaluations. The total number of possible 

solutions for the design and rehabilitation of the Moroccan network is about 2
817

, approximately 8.74 x 10
245

 

solutions. A complete enumeration of this solution space would consume an astronomical number of centuries of 

CPU time even if hundreds of trillions of objective evaluations can be done every second (the fastest computer 

up to date performs 3.9 trillion operations per second). The messy GA identified lower cost or near-optimal 

solutions by evaluating about 600,000 trials. The success of applying the messy GA to the design and 

rehabilitation of the Moroccan network represents one of the largest-scale optimization problems of this type. 

 

CONCLUSION 

Optimization of the design and rehabilitation for a water distribution system is improved by a comprehensive 

formulation of optimizing all system components, a unified genetic algorithm formulation and application of the 

full features of the messy genetic algorithm. The optimization model is extended to take into account all system 

elements including pipes, tanks, pumps and valves. The string and solution representation scheme, and the fitness 

formulation define two key steps for applying a genetic algorithm to solving the network optimization problem. 

The application of the messy genetic algorithm provides the most efficient search method for locating the least 

cost solution. In this way the computation efficacy is enhanced for optimizing almost any components of a water 

distribution system. 

Optimization of a water distribution system is a non-linear optimization problem. This type of problem 

has been studied previously by applying many different optimization techniques including genetic algorithms. 

One of the main benefits by the genetic algorithm optimization approach is attributed to the integration of a 

genetic algorithm with a hydraulic network solver. The hydraulic solver is called for each design trial and solves 
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for pipe flows and junction pressures. This approach is able to cope with steady state or EPS simulations for 

either a single or multiple demand loading conditions. It makes the best use of well-developed network 

simulation techniques and optimizes a partial or entire system with any combination of system elements including 

pipes, tanks, pumps and valves. It provides the maximum flexibility to the cost-effective design and rehabilitation 

of a water distribution system. 

A simple genetic algorithm is effective at solving a water pipeline optimization problem, but the 

difficulty at searching for optimal or near-optimal solutions increases as the dimension of the problem increases. 

Thus previously developed GA techniques are limited to the optimization of a relatively small water distribution 

system. The messy GA has significantly improved the efficacy of genetic-evolutionary computation. It uses an 

adaptive string representation of the solutions to a specific problem and focuses on searching for the short strings 

with above-average fitness  building blocks. The original messy GA suffered from the bottleneck of explicitly 

enumerating building blocks. It was overcome by introducing a building block filtering procedure that adaptively 

identified better-fit short strings. The messy genetic algorithm approach has been tested on two benchmark 

problems of water pipeline design and rehabilitation. The results obtained demonstrate that the messy GA 

consistently outperforms other GA paradigms. The application of the integrated messy GA technique to the 

optimal design and rehabilitation of the Moroccan water distribution system particularly shows its capability of 

optimizing a large-scale water distribution system. It is therefore concluded that the messy genetic algorithm 

provides a competent approach for the optimization of a water distribution system. The approach allows the least 

cost solution to be located more efficiently. It enables the optimal design and rehabilitation solution to be 

achieved for a large-scale water distribution system in a rapid manner.  
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APPENDIX II.  NOTATION 

The following symbols are used in this paper: 

)P,E,D(C


 

= cost of a design and rehabilitation solution; 

ck(dk) = cost per unit length of the k-th pipe diameter; 

ck(pk) = cost of the k-th pump capacity; 

ck(tk) = cost of the k-th tank size; 

ck(vk) = cost of the k-th pressure regulating valve size; 

ck(ek, dk) = cost per unit length of the k-th rehabilitation action ek for a pipe diameter of dk.; 

crep(j) = cost of repairing a break for pipe j; 

D


 = decision variables of new pipe diameter; 

E


 = decision variables of pipe rehabilitation actions; 

)(, tH ji  =  hydraulic head at junction i for demand loading case j at time t; 

min

, jiH  = minimum required hydraulic pressures at junction i for demand loading case j; 

max

, jiH  = maximum allowable hydraulic pressures at junction i for demand loading case j; 

)(, tHG ji  = hydraulic gradient (slope) of pipe i for demand loading case j at time t; 

max

, jiHG  = maximum allowable hydraulic gradient of pipe i for demand loading case j; 

J(t) = pipe break rate in year t; 

J0 = pipe break rate in year 0; 

P


 = decision variables of pump capacities; 

Pmink  = minimum pump horse power; 

Pmaxk  = maximum pump horse power ; 

Pc = probability of cut operator; 

Pk  = bit-wise cut probability; 

Ps = probability of splice operator; 

T


 = decision variables of tank sizes;  

 V


 = decision variables of valve sizes; 
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)(, tV ji  = flow velocity of pipe i for demand loading case j at time t;  

max

, jiV  = maximum allowable flow velocity of pipe i for demand loading case j; 

VS   = decision variables of valve settings; 

VSmink = minimum required valve setting for valve k; 

VSmaxk = maximum valve setting for valve k. 

in

kitankV ,  = inflow to tank k under demand loading case i; 

out

kitankV ,  = outflow from tank k under demand loading case i; 

Vk  = flow balance tolerance of tank k; 

 = length of the string; 

 = number of common genes in the two strings; 

nn = fitness of string nn; 



 27 

Table 1 Binary string representation of possible rehabilitation actions for the two-reservoir network 

Binary string Rehabilitation action index Possible rehabilitation actions 

00 0 Leaving a pipe 

01 1 Duplicating a pipe 

10 or 11 2 or 3 Cleaning a pipe 
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Table 2 Binary string representation of available pipe sizes for the two-reservoir network 

Binary sub-string  

coding the pipe size 

Corresponding 

diameter index 

Available pipe diameters 

(mm) 

000 0 152 

001 1 203  

010 2 254  

011 3 305  

100 4 356  

101 5 407  

110 6 458  

111 7 509  
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Table 3 A mapping from the sample string to its corresponding design and rehabilitation solution 

 

Pipes Variables Sub-string String values Solution values 

New pipe 1 Diameter 111 7 509 

New pipe 2 Diameter 101 5 407 

New pipe 3 Diameter 110 6 458 

New pipe 4 Diameter 001 1 203 

New pipe 5 Diameter 010 2 254 

old pipe 1 
Action 00 0 No change 

Diameter 111 7 No change 

old pipe 2 
Action 01 1 Parallel 

Diameter 101 5 407 

old pipe 3 
Action 11 2 Clean 

Diameter 010 2 No change 
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Table 4 Statistic results over ten runs of different genetic algorithm paradigms for optimization of the 

two-reservoir network 

Genetic algorithm 

paradigms 

Simple GA (Simpson et al. 1994; Simpson & 

Goldberg 1994) 

Messy genetic algorithm 

Roulette 

selection 

Tournament selection Building block 

enumeration 

Building block 

filtering S = 2 S = 5 S = 20 

Success runs (out of 

10 runs) 
6 10 10 9 10 10 

Avg. evaluations 14,697 8,800 4,300 2,900 6,181 2,400 

Avg. least cost 

($million) 
1.7773 1.7503 1.7503 1.7600 1.7503 1.7503 
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Table 5 Results of the messy GA runs compared with the improved GA 

Improved GA (Dandy et al.1996) Messy GA 

GA 

runs 

Lowest cost 

($million) 

 Achieved at 

Evaluations 

mGA 

runs 

Penalty 

factor ($/ft) 

Lowest cost 

($million) 

 Achieved at 

evaluations 

1 38.80 96,750 1 9,000,000 38.80 49,587 

2 39.06 137,400 2 13,000,000 39.06 42,787 

3 38.80 151,400 3 11,000,000 38.80 48,387 

4 39.06 145,700 4 15,000,000 40.17 53,187 

5 39.17 187,700 5 7,000,000 38.64* 48,187 

 Average = 143,790   Average = 48,427 

* The hydraulic pressure constraint at the junction 15 is violated by 0.02 (ft). 
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Table 6 Comparison of messy GA designs with previous GA solutions 

Duplicated 

Pipe No. 

Optimal diameters (in.) 

Improved GA (Dandy et al. 1996) Messy GA  

GA 1 GA 2 GA 3 mGA 1 mGA 2 mGA 3 

[1] 0 0 0 0 0 0 

[2] 0 0 0 0 0 0 

[3] 0 0 0 0 0 0 

[4] 0 0 0 0 0 0 

[5] 0 0 0 0 0 0 

[6] 0 0 0 0 0 0 

[7] 0 144 156 0 144 144 

[8] 0 0 0 0 0 0 

[9] 0 0 0 0 0 0 

[10] 0 0 0 0 0 0 

[11] 0 0 0 0 0 0 

[12] 0 0 0 0 0 0 

[13] 0 0 0 0 0 0 

[14] 0 0 0 0 0 0 

[15] 120 0 0 120 0 0 

[16] 84 96 96 84 96 96 

[17] 96 108 96 96 108 96 

[18] 84 72 84 84 72 84 

[19] 72 72 72 72 72 72 

[20] 0 0 0 0 0 0 

[21] 72 72 72 72 72 72 

Cost 

($million) 

38.80 39.06 39.17 38.80 39.06 38.64* 

* The hydraulic pressure constraint at the junction 15 is violated by 0.02 (ft). 
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Table 7 Cost of optimal rehabilitation strategies of the Moroccan network 

 

Messy GA 

solutions 

Penalty 

factor 

Repair cost Relining 

cost 

Replace-

ment cost 

Duplication 

cost 

New pipe 

cost 

Total 

cost 

fmGA1 550,000 235,352 41,600 29,020 497,680 309,200 1,112,852 

fmGA2 750,000 221,087 105,900 0 519,150 301,100 1,147,237 

fmGA3 500,000 215,266 82,500 14,740 526,100 309,200 1,147,806 

fmGA4 700,000 230,839 79,500 21,600 518,180 309,200 1,159,319 

fmGA5 600,000 224,083 54,600 0 606,480 309,200 1,194,363 

fmGA6 650,000 195,863 173,300 12,100 515,880 309,200 1,206,343 

fmGA7 800,000 158,192 277,200 79,120 543,570 326,000 1,384,082 

fmGA8 1,000,000 213,990 67,510 22,400 614,380 477,500 1,395,780 
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Table 8 Pressure heads and excess at critical nodes of Moroccan network (EPANET) 

 

Optimal 

solutions 

Node 59 Node 69 Node 87 Node 111 Evaluations 

achieved  head 

(m) 

excess 

(m) 

head 

(m) 

excess 

(m) 

head 

(m) 

excess 

(m) 

head 

(m) 

excess 

(m) 

fmGA1 20.09 0.09 20.01 0.01 20.13 0.13 20.17 0.17 630,290 

fmGA2 20.40 0.40 20.24 0.24 20.02 0.02 20.45 0.45 571,290 

fmGA3 20.92 0.92 20.18 0.18 20.03 0.03 20.08 0.08 566,290 

fmGA4 20.54 0.54 19.99 -0.01* 20.02 0.02 20.00 0.00 586,290 

fmGA5 20.13 0.13 20.017 0.017 20.01 0.01 20.87 0.87 430,290 

fmGA6 20.07 0.07 20.00 0.00 20.20 0.20 19.99 -0.01 575,290 

fmGA7 20.54 0.54 20.12 0.12 20.02 0.02 20.25 0.25 599,290 

fmGA8 20.24 0.24 20.04 0.04 20.48 0.48 21.42 1.42 906,970 

* A negative value implies the pressure deficit. 
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Figure 1 Two-reservoir Network 
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1 1 1  1 0 1  1 1 0  0 0 1  0 1 0  0 0 1 1 1  0 1 1 0 1  1 1 0 1 0

coding for 5 new pipes coding for 3 existing pipes

d7d1 e3e2e1 d6d5 d8d3d2 d4

one genotype

one phenotype

old pipe 1 old pipe 2 old pipe 3pipe 1 pipe 2 pipe 3 pipe 4 pipe 5
 

 

Figure 2 A sample string representation of one possible solution for the design of five new pipes and 

rehabilitation of three existing pipes 

 

 

 



 37 

 

1E+00

1E+03

1E+06

1E+09

1E+12

1E+15

1E+18

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Order of building blocks

In
it

ia
l 
p

o
p

u
la

ti
o
n

 s
iz

e 

l = 20

l = 40

l = 60

l = 80

l = 100

 

Figure 3 Initial population sizes required by original messy GA using complete enumeration 
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era = 0; 

while (era < max era ){ 

  initializing population; 

  evaluating population; 

  while ( current string length > desired building block length){ 

   //building block filtering phase; 

   selecting competitive strings; 

   deleting genes; 

   evaluating new strings 

  } 

  generation = 0; 

  while (generation < max generation ){ 

  //juxtapositional phase; 

   selecting competitive strings; 

   cut and splice operations; 

   mutation operations; 

   evaluating new population; 

   generation = generation + 1; 

  } 

  era = era + 1; 

} 

 

 

Figure 4 A summary of the steps in a messy genetic algorithm 
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Figure 5 New York City water supply tunnels (Dandy et al. 1996) 
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Figure 6 Comparison of convergence rates of the improved GA (Dandy et al. 1996) and the messy GA for 

the New York water tunnels problem  
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Figure 7 Layout of a Moroccan network 
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Figure 8 Comparison of convergence rates of the simple GA and the messy GA for the optimization of the 

Moroccan water distribution system 
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