
ACCEPTED VERSION

Wu, Zheng Y.; Simpson, Angus Ross Competent genetic-evolutionary optimization of water
distribution systems Journal of Computing in Civil Engineering, 2001; 15(2):89-101

 © 2001 American Society of Civil Engineers.

http://hdl.handle.net/2440/978

PERMISSIONS

http://www.asce.org/Content.aspx?id=29734

Authors may post the final draft of their work on open, unrestricted Internet sites or
deposit it in an institutional repository when the draft contains a link to the bibliographic
record of the published version in the ASCE Civil Engineering Database. "Final draft"
means the version submitted to ASCE after peer review and prior to copyediting or
other ASCE production activities; it does not include the copyedited version, the page
proof, or a PDF of the published version

21 March 2014

http://hdl.handle.net/2440/978
http://hdl.handle.net/2440/978
http://hdl.handle.net/2440/978
http://www.asce.org/Content.aspx?id=29734
http://cedb.asce.org/

 1

COMPETENT GENETIC-EVOLUTIONARY OPTIMIZATION OF WATER DISTRIBUTION

SYSTEMS

By

Zheng Y. Wu
1
 and Angus R. Simpson

2
, Member, ASCE

ABSTRACT: A genetic algorithm (GA) has been applied to the optimal design and rehabilitation of a water

distribution system. Many of the previous applications have been limited to small water distribution systems,

where the computer time used for solving the problem has been relatively small. In order to apply genetic and

evolutionary optimization technique to a large-scale water distribution system, this paper employs one of

competent genetic-evolutionary algorithms  a messy genetic algorithm to enhance the efficiency of an

optimization procedure. Maximum flexibility is ensured by the formulation of a string and solution representation

scheme, a fitness definition and the integration of a well-developed hydraulic network solver that facilitate the

application of a genetic algorithm to the optimization of a water distribution system. Two benchmark problems of

water pipeline design and a real water distribution system are presented to demonstrate the application of the

improved technique. The results obtained show that the number of the design trials required by the messy genetic

algorithm is consistently fewer than the other genetic algorithms.

Key Words: water distribution, optimization model, genetic algorithms, messy genetic algorithms, optimal

design and rehabilitation.

1
 Supervising Engineer, MW Soft Inc, 300 North Lake Ave. #1200, Pasadena, CA91101.

2
 Senior Lecturer, Department of Civil and Environmental Engineering, University of Adelaide, Australia 5005.

INTRODUCTION

Provision of adequate water supply service is an essential requirement for communities around the world.

Tremendous amounts of capital are being spent on the design of new water distribution systems and the

rehabilitation (or improvement) of existing networks in both developing and developed countries. Cost effective

expenditure on the design and rehabilitation is essential to achieve a sufficient quality service due to an ever-

tightened budget. Even today, despite the availability of many research papers since the 1960s on the

optimization of water distribution networks, the design of water distribution systems is still an approach of trial

 2

and error improvement. An engineer uses judgement, based on the evaluation of - for example - the pressures at

junctions from a computer hydraulic simulation, to determine which element sizes should be adjusted to further

reduce the cost (Karmeli 1968). In the mid-1980s, Walski (1985) and Goulter (1987) both predicted that within

the next decade (that was before 1997) water distribution optimization models should become everyday tools of

practicing water engineers. In 1992, Goulter concluded that optimization still has not penetrated the water

industry. As of today, the common use of optimization by the water industry still has not occurred. Although

traditional mathematical optimization methods including linear, non-linear and dynamic programming provided

efficient computation procedures for achieving a lower cost solution, the methods suffered from some

disadvantages such as (1) ineffective at reaching the least cost solution due to the zero-gradient optimality criteria

that easily trapped a search process at a local optimal solution; (2) lack of flexibility at handling discrete design

variables and optimizing a partial network that is often required for many practical engineering designs and (3)

complexity of implementing and using the technique. These methods have often required for a sophisticated

system analysis and careful (also time consuming) input data preparation. As a result, practicing engineers have

been cautious to accept the traditional approach for the optimization of a water distribution system.

The introduction of genetic and evolutionary algorithms (GA) for the optimization of the design of a

water distribution system (Murphy and Simpson 1992; Simpson et al. 1994; Dandy et al. 1996; Savic and Walters

1997; Wu and Simpson 1996, 1997 and many others) takes a different approach. GA optimization incorporates a

hydraulic network solver seamlessly within an optimization process. Thus all the sophistication features of the

latest simulation modeling techniques, including water quality aspects, can be an integral part of the genetic

algorithm technique. A hydraulic network solver evaluates the hydraulic performance of each design trial that is a

member of the genetic algorithm population of network designs. The network hydraulic information is then

passed back to the genetic algorithm module for computation of the fitness of the design. The use of hydraulic

simulation within the genetic algorithm formulation is the real strength of the technique. As an outcome, genetic

algorithm optimization offers the promise of easily accessible optimization of water distribution systems.

However, many previous applications of a genetic-evolutionary algorithm has been limited to a small network,

where the computer time of searching for the optimal or near optimal solutions and solving for the flow and

pressure conditions of each design trial has been relatively small. In order to apply a genetic-evolutionary

optimization technique to a large-scale water distribution system, the overall computation efficiency for

achieving the least cost design solution needs to be improved. Thus a more efficient genetic algorithm approach

 3

is needed for solving the optimization problem. This paper describes a competent approach to the genetic

algorithm optimization of a water distribution system. The improvement results from:

 application of the messy genetic algorithm (Goldberg et al. 1989) that significantly improves

the optimization efficiency;

 formulation of the genetic algorithm string and solution representation scheme, and the fitness

definition that facilitate the implementation of a genetic algorithm optimization model for

handling any combination of system elements;

 integration of the genetic algorithm with a hydraulic network solver that enables the solution

method to optimize all the system components including pipes, tanks, valves and pumps under

steady state or extended period simulations (EPS).

The paper starts with a brief overview on the traditional optimization techniques and a more detailed

review on genetic-evolutionary optimization approaches, followed by the formulation of a comprehensive

optimization model, genetic algorithm string and solution representation scheme together with a fitness

definition. Furthermore, the key features of a messy genetic algorithm are described in comparison with other

genetic algorithms, along with three case studies presented to demonstrate the application of the improved

methodology. Finally, conclusions are drawn from the theoretical formulation and the solid numerical

experiments.

LITERATURE REVIEW

Optimization of a water distribution system has been a subject of considerable research since the 1960s. Various

researchers (Walski 1985; Goulter 1987; Walters 1988; Lansey & Mays 1989a and Goulter 1992) have made

comprehensive reviews on the traditional methods. Early research on the optimization of water distribution

systems used a linear programming technique. The applications were to a branched system where flows were able

to be explicitly determined for each pipe (Karmeli et al. 1968). Alperovits and Shamir (1977) proposed a linear

programming gradient method (LPG) for optimization of a looped water distribution system. The LPG method

has been improved by a number of researchers. Most recently, Eiger et al. (1994) extended the LPG method by

applying a non-smooth optimization technique and duality theory. A method was developed for the computation

of a tight lower bound to the global optimal solution. The optimality of a solution was measured by the difference

between the tight lower bound and the solution. Thus the lower bound served as an optimality (stopping) criterion

for the optimization of water distribution systems. The efficacy of the improved LPG method has been

 4

demonstrated, however, it involves a considerable amount of mathematical sophistication. Other traditional

optimization techniques including direct search techniques, dynamic programming, integer programming, and

enumerative methods were applied to the optimal design of a water distribution system. A detailed review was

given by Lansey and Mays (1989a) on these traditional optimization techniques. Su et al. (1987) integrated a

generalized reduced gradient (GRG) technique with a hydraulic network solver KYPIPE. Lansey and Mays

(1989b) improved the technique by using an augmented Lagrangian method for handling the design constraints.

More recently, Kim and Mays (1994) developed a mixed-integer nonlinear programming formulation for optimal

rehabilitation of water distribution systems. Integer variables (taking a value of either 0 or 1) were used for

representing pipe rehabilitation actions (e.g. replacement, cleaning and relining). The other variables such as pipe

diameters and pump horsepower were treated as continuous variables. The problem was solved by a solution

methodology integrating an implicit enumeration scheme for the integer variables, the GRG and KYPIPE for

optimizing the continuous variables of pipe diameter and pump horsepower.

Genetic algorithms (Goldberg 1989) are a general search method based on the principles of natural

evolution and biological reproduction. It randomly initiates a population of solutions or individuals. Each

individual is represented by either alphabetic or binary string that encodes one possible solution. The number of

bits in one string is defined as the string length. The strings representing all the possible solutions for a specific

problem have an identical length or so-called a problem length that remains unchanged during the search process.

This type of genetic algorithms processes fixed-length strings during a GA optimization and is referred as to a

“simple genetic algorithm”. Application of a simple GA to the optimal design of water distribution systems was

developed in the early 1990s (Murphy and Simpson 1992). In this early work, a binary string was used to

represent the decision variables of (1) pipe diameters for new pipes and duplicated pipes parallel to existing pipes

and (2) rehabilitation actions including cleaning a pipe and laying a parallel pipe to an existing pipeline. The

simple genetic algorithm using roulette wheel selection, one-point crossover and bit-wise mutation was applied to

determine the least cost combination of pipe diameters and rehabilitation actions for optimal expansion and

rehabilitation of a small two-reservoir fourteen-pipe looped water distribution system. The optimal solution was

subject to just the minimum junction pressure requirement under three demand loading cases including a peak

hour demand loading case and two fire flow demand conditions. The GA found the optimal solution for a set of

diameters of the new and duplicated pipes and the options of cleaning the existing pipes. The performance of the

simple GA was compared with a complete enumeration and other optimization methods (Simpson et al. 1994).

The GA based approach was found to outperform other optimization methods at solving this small problem. It

 5

was observed, however, that the simple GA optimization result was sensitive to the GA parameters and operators.

Simpson and Goldberg (1994) investigated factors that influence the performance of the simple GA in finding the

optimal solution for the two-reservoir looped network problem. They concluded that the use of the tournament

selection scheme and an adequate population size were the most critical aspects of applying a simple GA to the

optimal design of water distribution systems. Dandy et al. (1996) improved the GA by using (i) fitness scaling;

(ii) creeping mutation and (iii) Gray coding (instead of binary coding), and solved the New York City Tunnel

water supply network problem. The improved GA found the least cost solution of $38.8 million. The main

difficulty associated with the improved simple GA (as with the simple GA) included the considerable effort

required to tune the GA parameters (population size, probability of crossover and mutation) to find the range of

low cost solutions. It took dozens of runs to find the optimal solution. In fact, the lowest cost solution of $38.80

million was found infrequently by the improved GA. Savic and Walters (1997) integrated a simple GA with the

multi-quality EPANET hydraulic network solver (Rossman 1994) and applied to three benchmark problems in

literature. They identified that the optimal solution was sensitive to the coefficients in Hazen William formula

used in hydraulic simulation. More recently, Lippai et al. (1999) linked EPANET with a number of simple GA-

based optimizers for the optimization of a water distribution system.

A simple genetic algorithm represents a solution space with the strings of an identical problem length. It

is a tidy representation of a solution space in string length. Goldberg et al. (1989) proposed a competent genetic-

evolutionary algorithm  the messy genetic algorithm (mGA) using a variable-length string representation. The

length of mGA strings changes not only over generations, but also varies from one string to another in one

population. It forms a type of messy representation of a solution space. It was found that the messy representation

of a solution space is more effective than the tidy representation for the optimization of a water distribution

system (Wu and Simpson 1996, 1997; Simpson & Wu 1997; Wu et al. 2000). Halhal et al. (1997) proposed a

similar approach called the structured messy GA and applied to maximizing the benefit of water distribution

system rehabilitation subject to a limited available budget. The structured messy GA retained partial features of

the messy GA by Goldberg et al. (1989). It started with a population of short strings of the same length. The short

strings were concatenated over generations. Thus the string length increased equally over generations until it

reached a prescribed length. The same length was attained for all the strings within one population. This allowed

the simple genetic algorithm operators to be applied to reproduce next generation rather than the messy genetic

algorithm operators. The strength of the messy genetic algorithm, however, is the versatile variation of the string

length not only within one population but also during an artificial evolution process. It is the variable-length

 6

representation, together with the messy GA operators that empowers an artificial evolution process to identify the

good clusters of string bit patterns that are contained in good solutions. Goldberg et al. (1989) demonstrated that

the messy genetic algorithm was able to locate optimal solutions in the search space that proved difficult-to-find

using a simple genetic algorithm. In this paper, we explore the application of full features of the messy genetic

algorithm to enhance the capability of the genetic-evolutionary computation approach to the optimal design and

rehabilitation of a water distribution system. Performance and working mechanics of the messy GA are also

compared to the fixed-length genetic algorithm paradigms.

A DESIGN AND REHABILITATION FORMULATION

Design of a water distribution system is a multi-phase procedure. Walski (1995) classified it into four stages such

as (1) master planning; (2) preliminary design; (3) subdivision design and (4) rehabilitation. The optimization

model presented in this paper deals with the problems of the last two categories. For a given network layout,

demand loading conditions and an operation policy, the optimal design and rehabilitation of a water distribution

system is to determine the least cost combination of (1) new pipe diameters)(D


, (2) pipe rehabilitation actions

)(E


, (3) pump capacities)(P


, (4) tank sizes)(T


, (5) valve sizes V)(


and setting)(VS . A new pipe can be

an expansion (subdivision) to, a replacement of or a parallel pipe (duplication) to an existing pipeline. The total

cost of a design and rehabilitation solution is minimized while satisfying a set of prescribed system criteria.

Cost Objective Function

Total cost of a network design and rehabilitation is the sum of the cost associated with all the components being

designed and rehabilitated. Let the total numbers of design pipes, pumps, tanks, valves and rehabilitation pipes be

DPP, DPM, DTK, DVV, RPP respectively; and let the costs associated with each group be (i) ck(dk) = cost per

unit length of the k-th pipe diameter selected from a set of available pipe diameter
0

mD of DC choices; (ii) ck(pk) =

cost of the k-th pump capacity selected from a set of available pump capacity
0

mP of PC choices; (iii) ck(tk) = cost

of the k-th tank size selected from a set of possible tank size
0

mT of TC choices; (iv) ck(vk) = cost of the k-th

pressure regulating valve selected from a set of possible valve size
0

mV of VC choices; and (v) ck(ek, dk) = cost per

unit length of a pipe for the k-th rehabilitation action ek chosen from a set of possible action
0

mE of EC choices and

corresponding existing pipe diameter dk. Thus the cost objective function is given as:

 7

)p(cL)e,d(cL)d(c)P,E,D(C k

DPM

1k

k

RPP

1k

kkkkkk

DPP

1k

k 





 (3)

where Lk = length of the k-th pipe. Each of decision variables P,E,D


is to select its possible values from a

variable choice table or a set of available component sizes (or capacities), given as:

 DCmDdk mk ,...,1,, 0  (4)

 ECmEek mk ,...,1,, 0  (5)

 PCmPpk mk ,...,1,, 0  (6)

 TCmTtk mk ,...,1,, 0  (7)

 VCmVvk mk ,...,1,, 0  (8)

A design trial solution is analyzed by calling a hydraulic network solver in a steady state or extended period

simulation (EPS). The hydraulic simulation solves a set of quasi-linear equations and ensures the satisfaction of

the implicit system constraints corresponding to the conservation of flow continuity at nodes and the energy

conservation around loops. The hydraulic system responses are checked against a number of the constraints that

are prescribed for a feasible design and rehabilitation solution.

Junction Pressure Constraints

Junction pressure is often required to maintain greater than a minimum pressure level to insure adequate water

service and less than a maximum pressure level to reduce water leakage within a system. Thus junction pressure

constraints are given as:

NDMjNJitHtHH jijiji ,...,1;,...,1,,)(max

,,

min

,  (9)

 8

where)(, tH ji = hydraulic head at junction i for demand loading case j at time t; NJ = number of junctions in

system (excluding fixed grade junctions);
min

, jiH ,
max

, jiH = minimum required and maximum allowable hydraulic

pressures at junction i for demand loading case j; and NDM = number of demand loading cases.

Pipe Flow Constraints

A design and rehabilitation solution is also constrained by a set of pipe flow criteria that are often given as a

maximum allowable flow velocity and a maximum allowable hydraulic gradient or slope, given as:

NDMjNPitVtV jiji ,...,1;,...,1,,)(max

,,  (10)

NDMjNPitHGtHG jiji ,...,1;,...,1,,)(max

,,  (11)

where)(, tV ji = flow velocity of pipe i for demand loading case j at time t;
max

, jiV = maximum allowable flow

velocity of pipe i for demand loading case j; NP = number of constraint pipes in system;)(, tHG ji = hydraulic

gradient (slope) of pipe i for demand loading case j at time t and
max

, jiHG = maximum allowable hydraulic

gradient of pipe i for demand loading case j.

Pump Capacity Constraints

A pump can be designed by its capacity of a useful horse power Pk that is often required not smaller than a

minimum horse power Pmink or greater than a maximum horse power Pmaxk, thus pump constraints are given as:

 Pmink  Pk  Pmaxk k = 1, …, DPM (12)

Valve Setting Constraints

During the optimization process, a valve setting can be optimized within the range of a minimum required and a

maximum allowable setting. The constraint for a valve setting is:

 VSmink  VSk  VSmaxk k = 1, …, DVV (13)

 9

where VSmink represents the minimum required valve setting for valve k, VSk designates the valve setting for

valve k and VSmaxk denotes the maximum valve setting for valve k.

Tank Flow Constraints

When the size of a tank is taken into account as a design variable, a flow balance must be maintained for a

sufficient supply to a water distribution system. Thus a tank design is constrained by:

NDMiDTKkVtankVtankV k

out

ki

in

ki, ,...,1;,...,1,,  (14)

where
in

kitankV , = amount of the inflow to tank k under demand loading case i;
out

kitankV , = amount of the

outflow from tank k; Vk = flow balance tolerance of tank k. The optimization problem formulated above is to be

solved for the least cost solution by a genetic algorithm optimization technique.

A GENETIC ALGORITHM FORMULATION

A design and rehabilitation solution is represented as a string during a genetic algorithm optimization while the

string is evaluated by its fitness, a surrogate measure of the solution optimality. Determining a string

representation and formulating its corresponding fitness to an objective function are two critical steps to apply a

genetic algorithm to solving a network optimization problem.

String and Solution Representation

A genetic algorithm string and solution representation is to determine (1) the type of strings; (2) the number of

bits to represent each decision variable and (3) the mapping that converts a string to a possible solution. A string

can be consisted of binary bits, decimal digits or alphabets. Let b be the number of one-bit possible values for a

particular string type, for example, b = 2 for binary strings and b = 10 for decimal strings. The number of the bits

that are needed to encode all the possible solution values for one decision variable can be calculated as:











b

Nchs
Nbit

log

log
 (15)

 10

 where Nbit denotes the number of the bits in a sub-string representing one decision variable,   is the ceiling

operator that calculates the nearest integer greater than the operand and Nchs designates the number of possible

solution values for the variable to choose from. For example, Nchs = DC given as Eq.(4) for selecting a possible

pipe size. A string, representing a possible solution to the design and rehabilitation of a specific network, is the

concatenation of the sub-strings that designate all the decision variables to the system.

 To evaluate the fitness of a string, the string must be converted into a design solution by mapping a

string value onto a variable value. For each type of design variables, a choice table, designated by Eq.(4)-(8) for a

specific problem, is often given for a variable to look up a corresponding solution value according to its string

value. Assuming one sub-string for one variable is represented as a1 a2 ,……an , the value of the sub-string can be

calculated as:





Nbit

n

n

ni baS
1

1
 (16)

Then, the sub-string is converted to a solution value by mapping the string value as above to index m of the

variable choice table given as Eq.4 – 8, namely:






Nchs

S
m

i

NchsSif

NchsSif

i

i




 (17)

By using this string and solution representation, a genetic algorithm can be applied to solving the network

optimization problem formulated earlier. It provides a unified computation framework for genetic-evolutionary

optimization of a water distribution system and is also applicable to many other discrete optimization problems.

An example is given below to illustrate the string and solution representation scheme applied to the design

variables of pipe sizes and rehabilitation actions (cleaning and duplicate pipes). Application to the other types of

design variables such as tank sizes, pump capacities and valve settings is straightforward.

A water distribution system, studied by Simpson et al. (1994) as shown in Figure 1, consists of two

reservoirs and fourteen pipes. There are five new pipes (DPP = 5) to be added to the system, three existing pipes

(RPP = 3) to be rehabilitated by taking one of the three actions as given in Table 1. The actions include cleaning,

 11

duplicating (laying a parallel pipe) and leaving a pipe as it is. Table 2 gives eight commercially available pipe

sizes that can be selected from for a new and duplicated pipe. The task is to determine the least cost solution or

combination of rehabilitation actions and pipe sizes while the junction pressures meet the minimum required

pressure under three demand loading conditions. Binary strings (i.e. b = 2) are used for representing a design

solution. To encode eight possible pipe sizes (Nchs = DC = 8), the number of binary bits required for one design

variable of a new pipe diameter is Nbit = 3 as calculated by Eq.(15). Similarly, two binary bits are needed to

represent three rehabilitation actions (Nchs = EC = 3), for each of three existing pipes to be rehabilitated. Thus

the total length of a string for this example problem is 30 bits. Figure 2 shows one string representation of a

solution for this example network. The string can be converted to a design and rehabilitation solution. For

instance, sub-string 101 for a new pipe gives a string value of 5 by Eq. (16), by mapping the string value of 5 to

the index of the diameter choice Table 2, a corresponding pipe diameter of 407 mm is assigned to the sub-string

101. For this example, a 2-bit binary sub-string provides four choices, one string value (i.e. 3) is redundant and is

set to the last rehabilitation action of cleaning a pipe. The sample string in Figure 2 is converted into a design

solution, as given in Table 3, by mapping a sub-string value to the index of a pipe diameter or a rehabilitation

action. For a pipe taking the rehabilitation action of cleaning a pipe, the pipe size remains the same but the

roughness coefficient needs to be updated to reflect a cleaned pipe condition. In this way a string is converted

into a design and rehabilitation solution. A fitness value is to be assigned to the string as a surrogate optimality

measure of the corresponding design solution.

Fitness Evaluation

In a genetic algorithm, fitness is introduced as the performance measure of a string or an individual adapting to

an objective landscape. A genetic-evolutionary algorithm searches for the best string by mimicking Darwin’s

natural selection principle of survival of the fittest. Thus string fitness is maximized during a search process and

accordingly the best string is the string that gains the maximum fitness value. However, the cost associated with a

network design and rehabilitation is to be minimized to search for the least cost solution. Therefore a fitness

function needs to be defined such that a genetic-evolutionary algorithm equivalently minimizes the cost objective

function while the fitness is maximized. The fitness of a string corresponding to a solution can be formulated in

many ways, the fitness definition by Wu and Larsen (1996) has been used as:

 12

)P,E,D(C

)P,E,D(C
1

nn

NN,...,1nn

nn

nn

Max






 (18)

where NN = the population size;)P,E,D(Cnn


 = the cost of a design and rehabilitation solution nn at current

generation. This has a desirable property that the fitness is in the range 0 10 nn . and that the cost

)P,E,D(C


 will be minimized while the fitness is maximized over generations. The optimization procedure is

undertaken by using a messy genetic algorithm.

MESSY GENETIC ALGORITHMS

The working mechanics of a genetic algorithm is derived from a simple assumption (Holland 1975) that the best

solution will be found in the solution region that contains a relatively high proportion of good solutions. A set of

strings that represent the good solutions attains certain similarities in bit values. For example, 3-bit binary strings

001, 111, 101 and 011 have a common similarity template of **1, where wild star * denotes don’t-care symbol

taking a value of either 1 or 0. The four strings represent four good solutions and contribute to the fitness values

of 10, 12, 11 and 11 to a fitness function of 310),,(21321

x
xxxxxf  , where x1, x2 and x3 directly takes

a bit value as an integer from left to right. In general, a short similarity template that contributes an above-

average fitness is so-called a building block. Building blocks are often contained in short strings that represent

partial solutions to a specific problem. Thus searching for good solutions is to uncover and juxtapose the good

short strings that essentially designate a good solution region and finally lead a search to the best solution.

Goldberg et al. (1989) developed the messy genetic algorithm as one of competent genetic algorithm

paradigms by focusing on improving GA’s capability of identifying and exchanging building blocks. The first-

generation of the messy GA explicitly initializes all the short strings of a desired length k, where k is referred as

to the order of a building block defined by a short string. For a binary string representation, all the combinations

of order-k building blocks requires a number of n
l
k

k 

 

2 initial short strings of length k for an l-bit problem.

For example, as shown in Figure 3, the initial population size of short strings by completely enumerating the

building blocks of order 4 for a 40-bit problem is more than one million. This made the application of the first-

generation messy GA to a large-scale optimization problem impossible. This bottleneck has been overcome by

 13

introducing a building block filtering procedure (Goldberg et al. 1993) into the messy GA. It speeds up the

search process and is called a fast messy GA.

The fast messy GA emulates the powerful genetic-evolutionary process in two nested loops, an outer

loop and an inner loop. Each cycle of the outer loop, denoted as an era, invokes an initialization phase and an

inner loop that consists of a building block filtering phase and a juxtapositional phase. Like a simple genetic

algorithm, the messy GA initialization creates a population of random individuals. The population size has to be

large enough to ensure the presence of all possible building blocks. Then a building block filtering procedure is

applied to select better-fit short strings and reduce the string length. It works like a filter that “bad” genes not

belonging to building blocks are deleted so that the population contains a high proportion of short strings of

“good” genes. The filtering procedure continues until the overall string length is reduced to a desired length k.

Finally, a juxtapositional phase follows to produce new strings. During this phase, the processed building blocks

are combined and exchanged to form offspring by applying the selection and reproduction operators. The

juxtapositional phase terminates when the maximum number of generations is reached. Thus the cycle of one era

iteration completes. A summary of the steps in a messy GA is given in Figure 4. The length of short strings that

contains desired building blocks is often specified as the same as an era, starting with one to a maximum number

of eras. Thus preferred short strings increase in length over outer iterations. In another words, a messy GA

evolves solutions from short strings starting from length one to a maximum desired length. This enables the

messy GA to mimic the natural and biological evolution process that a simple or one cell organism evolves into a

more sophisticated and intelligent organism. Goldberg et al. (1989, 1993) has given the detail analysis and

computation procedure of the messy GA. The key components and features of the messy GA are outlined as

follows.

Variable-length string

Unlike a simple GA, a messy GA represents a gene by a pair of gene locus and gene value, noted as (gene locus,

gene value), in a string of variable length. A gene locus is the location or sequential order of a gene bit in a full-

length string. For binary string representation, each gene bit takes a value of either 0 or 1. For instance, the

sample solution string given in Figure 2 is represented as a messy GA string given as:

(1,1), (2,1), (3,1), (4,1), (5,0), (6,1), (7,1), (8,1), (9,0), (10,0), (11,0), (12,1), (13,0),

(14,1), (15,0), (16,0), (17,0), (18,1), (19,1), (20,1), (21,0), (22,1), (23,1), (24,0), (25,1),

(26,1), (27,1), (28,0), (29,1), (30,0)

 14

where the first number within a bracket is the gene locus the sequential order of a bit in the string and the second

number refers to the bit value (i.e. 1 or 0). It is the locus that enables the messy GA to locate a bit value in a

variable-length string that can be under or over specified. A under specified string is the string with some missing

bits while an over specified string is the string with multiple bit values. For example, a 3-bit string can be

represented either by (1,1), (3,0) or by (1,1), (2,1), (3,0), (3,1). The former coding set, containing only two pairs

of gene representation for bit 1 and 3, is called an under-specification because bit 2 is missing. An under

specified string is evaluated by filling the missing bit with a corresponding bit value from a full-length string  a

competitive template. An initial competitive template can be randomly generated and replaced by the best string

found in later generations. The latter coding set, consisting of four pairs of gene representation, is called an over-

specification because more than one value is given for bit 3. A redundant bit value is removed by following a

first-come-first-served rule scanning from left to right. The scanning rule together with a full-length competitive

template enables the messy GA to evaluate both under and over specified strings. It provides the messy GA a

maximum flexibility at varying the string length to uncover better-fit short strings  building blocks.

Building blocks filtering

The power of a genetic algorithm is its capability of searching for and grouping together building blocks  short

strings (or partial solutions) with greater (or above-average) fitness. The messy GA emphasizes on uncovering

building blocks before grouping them together for a better solution. After generating an initial population of

strings with a problem length of l, a messy GA identifies building blocks of a certain length (or order) by

randomly deleting gene bits in a string. The length of the string is subsequently reduced to a desired length. The

process of detecting good building blocks is called building block filtering.

Building block filtering offers a way of gradually detecting building blocks of order-k from the strings of

l'-length (l'  l). During this phase, a string is first selected by a thresholding selection (explained in a later

section), then the genes are randomly deleted to reduce the string length and the new string with the remaining

genes is evaluated. As given in Figure 4, an iteration of selecting strings and deleting genes continues until the

string length is reduced to a desired order of building blocks. The gene deletion rate, the number of genes being

deleted in each iteration of a building block filtering loop, has to be chosen such that it is on average less than the

rate at which better strings get more copies by selection. Good results have been obtained for the numerical

experimental testing of the fast messy GA by using a deletion rate of 0.5 (Goldberg et al. 1993). It means that 50

 15

percent of the current genes are randomly deleted from the selected strings, which reduces the string length to just

half of the previous string length. These shortened strings are then evaluated and the same procedure of the

selection and gene deletion are applied until the string length is near the order k of the required building blocks.

Thresholding selection

Since the messy GA allows variable length strings to be processed, comparing two strings without a gene bit from

any common gene locus or bit tag is meaningless. For example, for a 5-bit problem, the strings ((1,1) (2,0)) and

((3,1) (5,0) (4,1)) can be selected to participate in a tournament competition, but comparing both strings does not

make a sense because there are no bits specified for the same locus. Thresholding selection was introduced to

ensure that strings compete with each other only when they contain some genes from the same gene locus or with

the same tags. A similarity measure  is used to denote the number of common genes in two strings. In practice, a

tournament selection is held, where two strings are allowed to compete with each other if the number of  genes

from the matching tags is greater than a prescribed threshold value given as (Goldberg et al. 1989):

  






l l

l

1 2
 (19)

where l1 = the length of the first string, l2 = the length of the second string and l = the problem length. For

example, for a 10-bit problem (l = 10), string ((1,0) (5,0) (3,1)) (l1 = 3) and string (((1,1) (3,0) (5,0) (6,1)) (l2 =4)

can be selected, a threshold value  = 12/10 = 2 is required for the two strings to participate in tournament

selection. The number of the common genes in the two strings is 3, greater than the required threshold number of

genes, thus they are allowed to compete each other by the thresholding selection.

Cut and splice operators

The crossover operator used in a simple GA cannot be applied to variable length strings in a messy GA. Two

operators, cut and splice, have been designed and are used for a messy genetic reproduction. Cut acts to cut a

chromosome into two, while splice links or concatenates two chromosomes to form one individual. If cut and

splice are called in turn and applied to two strings, both operators work in a similar way to one point crossover

operator in a simple genetic algorithm. The cut operator is activated by the cut probability given as:

 16

 Pc = Pk( - 1) (20)

where P
k
 is the specified bit-wise cut probability and  is the length of the string. The splice is initiated by a

prescribed probability Ps that is taken as a constant value for the messy GA optimization. The cut probability for

a string is defined as a linear function of a string length as above. It increases as a string length increases. During

the early stages of a juxtapositional phase, strings are short, and the cut probability is low, consequently a cut

operation is unlikely to be invoked. A splice operation is more likely to be applied at this stage. Thus strings

grow in length. However, the longer a string grows, the higher the cut probability becomes and the more likely

the string is cut. The length of strings remains within a certain range when a cut probability is about the same as a

splice probability.

INTEGRATED SOLUTION METHODOLOGY

The optimal design and rehabilitation problem is solved by seamlessly integrating the messy GA with a hydraulic

network solver EPANET (Rossman 1994). The messy genetic algorithm is employed as a solution seeker while

EPANET is used as a hydraulic network simulator solving the system hydraulic equations for each trial. First of

all, a string is converted to a design and rehabilitation solution by following the string and solution representation

scheme, namely mapping the sub-string values to the index of possible decision choices by Eq.(12) and (13). The

network solver may be called to perform hydraulic simulations for single or multiple demand loading conditions.

Hydraulic results such as junction pressures, flow velocities and hydraulic gradients (slopes) are then passed back

to the genetic algorithm module and checked against the design constraints given by Eq.(7)-(10). Subsequently,

the maximum design constraint violation can be found for all demand loading cases. The actual cost of a design

and rehabilitation trial is calculated by Eq.(3). In addition, a penalty cost is computed when a design constraint is

violated. The total cost for the solution is the sum of an actual design and rehabilitation cost and a penalty cost.

Finally the fitness for the string is given by Eq.(14) using the information of the total cost. The messy genetic

algorithm, employing the fitness as surrogate measure of solution optimality, searches for the optimal design and

rehabilitation solution.

CASE STUDIES

 17

The messy genetic algorithm optimization methodology is applied to three case studies, a two-reservoir system,

the New York City tunnels problem in literature and one real water distribution system in Morocco. The results

obtained are presented below.

Two-reservoir network

As described earlier, the design task for a two-reservoir network is to determine the least cost combination of

rehabilitation actions for three existing pipes and pipe diameters for five new pipes while the junction pressures

are required to satisfy the minimum pressure. Previous studies (Simpson et al. 1994; Simpson & Goldberg 1994)

applied the simple genetic algorithm and identified the global optimal solution of $1.7503 million for the two-

reservoir network problem. The same optimal solution was found by using the messy GAs. The performance of

the messy GA and the simple GAs is summarized and compared by the statistical results over ten computer runs.

Table 4 shows that the messy GAs found the lowest cost solution (global optimum) in each of the 10 runs with

different random seeds. The original messy GA using building block enumeration required only one third to half

of the evaluation numbers of the simple GA using roulette wheel selection (Simpson et al. 1994), and also less

than the simple GA with tournament selection (selection pressure s = 2). Simpson and Goldberg (1994) observed

that increasing tournament pressure (s = 5) for the simple GA could reduce the number of evaluations, and thus

improve the search efficiency, but too much pressure (s =20) might lead the search to a local optimum. Overall,

the fast messy GA, using building block filtering, has further reduced the number of the evaluations and has been

shown the most efficient at solving this small problem.

 The New York city tunnels problem

The New York city water tunnels problem was posed by Schaake and Lai (1969). Figure 5 shows the layout of

the system as in 1969. It consists of one water supply source at Hillview reservoir, and two main city tunnels

named City Tunnel No. 1 and City Tunnel No. 2. The objective is to determine if a new pipe is to be laid parallel

to an existing pipe and the diameter of a parallel pipe while the system is required to provide minimum hydraulic

grades. This problem has been previously studied by a number of researchers in literature (Gessler 1982; Bhave

1985; Morgan and Goulter 1985; Quindry et al. 1981; Fujiwara and Khang 1990; Savic and Walters 1995;

Dandy et al. 1996 and Lippai et al. 1999). The messy GA approach was applied to demonstrate its performance

to the optimization of the New York city water tunnels system. A binary coding scheme has been used for the

messy GA optimization. Four bits providing sixteen choices were used to code the possible sizes for each pipe.

 18

There are fifteen choices of new pipe sizes in Table 9. The sixteenth choice was encoded as 0000 for a parallel

pipe of zero-diameter namely leaving an existing pipe as it was. A total of eighty-four binary bits were used to

represent the New York water tunnels optimization problem.

 In order to compare the performance of the messy GA with the improved GA results the same Hazen-

Williams equation as used by Dandy et al. (1996) was adopted as:

 h L
Q

C
Df 









4 7291

1 852

4 8704.

.

.
 (21)

The messy GA was run several times with different penalty factors applied for the constraint violation of the

minimum required hydraulic grades. A set of low cost solutions obtained by the messy GA is compared with the

results by the improved GA (Dandy et al. 1996) in Table 5. The corresponding diameters for each solution are

given in Table 6. It shows that the cost of the optimal or near optimal solutions found by the messy GA are very

similar to the improved GA, however, the messy GA is more efficient than the improved GA at searching for the

lower cost design solutions. The improved GA required an average of 143,790 evaluations over five GA runs to

reach the optimal or near-optimal solution. In contrast, the messy GA evaluated an average of 48,427 solutions

over five messy GA runs to achieve similar solutions. The number of evaluations required by the messy GA is

about one third of the evaluations required by the improved GA for this case study. Figure 6 compares a typical

convergence rate of the messy GA solution with the improved GA for the optimization of New York city tunnels

problem. It is demonstrated that the messy GA approach has significantly improved the computation efficiency

for this particular case study.

A Moroccan network

A real water distribution system, as shown in Figure 7, is for a town of 50,000 inhabitants in Morocco. This

network consists of one hundred and fifteen nodes, one hundred and fifty-eight existing pipes to be rehabilitated

and nine new pipelines to be designed (or sized) for the system. Four possible rehabilitation actions, including

replacing a pipe, relining a pipe, duplicating a pipe and leaving a pipe as it is, can be applied to the rehabilitation

of the existing pipes. The problem has been studied by Hahal et al. (1997) using a multi-objective genetic

algorithm approach. The fast messy genetic algorithm has been applied to solving this problem for a set of lower

cost solutions.

 19

The optimization of the Moroccan network has been specified as determining the least cost solution of

the rehabilitation action for each of one hundred and fifty-eight existing pipes and the diameter for each of nine

new pipes while satisfying the minimum required junction pressure of 20 meters. Apart from the cost associated

with the rehabilitation actions, a repair cost is assumed to the pipe without taking an actual rehabilitation action

or being assigned the action of leaving the pipe as it is. It is also assumed that no annual repair cost occurs to a

new pipe during its first 10 years, as a new pipe is usually under warranty for this period of time. The repair cost

is calculated as follows (Hahal et al. 1997).

 






trt

tpt
tpt

rep

rep
r

jctJ
jC

)1(

)()(
)((22)

where crep(j) = repair cost of a breakage for pipe j; r = interest rate; tp = present year; tr = year tp + 10; and J(t) =

breakage rate in year t, which is given as:

t

ro bJtJ)1()( (23)

where Jo = break rate in year 0 (break/km/yr); br = break rate growth coefficient and t = time in years.

The messy GA used a binary representation for solving the optimization of the Moroccan network. Two

bits have been used for coding the four rehabilitation actions and three bits have been used for coding the eight

pipe sizes for each of 158 existing pipes. Three bits have been used for coding the eight pipe sizes for each of the

nine new pipes. Thus 817 binary bits are used for representing one solution of the Moroccan network. A number

of different penalty factors were used for the optimization of the Moroccan network. Table 7 summarizes the

least cost rehabilitation solutions for eight different penalty factors. The results show that there are slight

differences in cost among the lower cost solutions obtained by using penalty factors from $550,000 to $750,000

per meter of the excess of a junction pressure head. The greater the penalty factor that was used in a messy GA

run, the greater the cost of the best solution was found. This was due to the large penalty factor that forced the

genetic algorithm search towards the feasible solution region. The genetic algorithm operations tended to

reproduce more solutions within the feasible solution region than the infeasible region. It helps to ensure the

feasibility of the optimal solution, but requires more evaluations to reach the optimal solution as shown in Table

 20

8. However, the different optimal solutions provide engineers and/or decision-makers with more options to

choose the optimal rehabilitation strategy by using other non-quantifiable engineering criteria.

A simple GA using binary strings, tournament selection (S = 5), uniform crossover and mutation was

also applied to solving this problem. It was noticed that the simple GA was hardly able to find a good solution on

such a large-scale optimization problem. The simple GA was run with a population size of 1500 and a maximum

generation of 5000. The best solution of about $6.5 million was found at the first of 300 generations and hardly

improved to the end of 5000 generation. Figure 8 gives a comparison of the convergence rates of the simple GA

with the messy GA. It shows that both the messy GA and the simple GA start with a similar cost of initial design

solutions, but the messy GA rapidly improved the design and rehabilitation solutions from about $9.0 million to

near-optimal solution of approximately $1.1 million over 600,000 evaluations. The total number of possible

solutions for the design and rehabilitation of the Moroccan network is about 2
817

, approximately 8.74 x 10
245

solutions. A complete enumeration of this solution space would consume an astronomical number of centuries of

CPU time even if hundreds of trillions of objective evaluations can be done every second (the fastest computer

up to date performs 3.9 trillion operations per second). The messy GA identified lower cost or near-optimal

solutions by evaluating about 600,000 trials. The success of applying the messy GA to the design and

rehabilitation of the Moroccan network represents one of the largest-scale optimization problems of this type.

CONCLUSION

Optimization of the design and rehabilitation for a water distribution system is improved by a comprehensive

formulation of optimizing all system components, a unified genetic algorithm formulation and application of the

full features of the messy genetic algorithm. The optimization model is extended to take into account all system

elements including pipes, tanks, pumps and valves. The string and solution representation scheme, and the fitness

formulation define two key steps for applying a genetic algorithm to solving the network optimization problem.

The application of the messy genetic algorithm provides the most efficient search method for locating the least

cost solution. In this way the computation efficacy is enhanced for optimizing almost any components of a water

distribution system.

Optimization of a water distribution system is a non-linear optimization problem. This type of problem

has been studied previously by applying many different optimization techniques including genetic algorithms.

One of the main benefits by the genetic algorithm optimization approach is attributed to the integration of a

genetic algorithm with a hydraulic network solver. The hydraulic solver is called for each design trial and solves

 21

for pipe flows and junction pressures. This approach is able to cope with steady state or EPS simulations for

either a single or multiple demand loading conditions. It makes the best use of well-developed network

simulation techniques and optimizes a partial or entire system with any combination of system elements including

pipes, tanks, pumps and valves. It provides the maximum flexibility to the cost-effective design and rehabilitation

of a water distribution system.

A simple genetic algorithm is effective at solving a water pipeline optimization problem, but the

difficulty at searching for optimal or near-optimal solutions increases as the dimension of the problem increases.

Thus previously developed GA techniques are limited to the optimization of a relatively small water distribution

system. The messy GA has significantly improved the efficacy of genetic-evolutionary computation. It uses an

adaptive string representation of the solutions to a specific problem and focuses on searching for the short strings

with above-average fitness  building blocks. The original messy GA suffered from the bottleneck of explicitly

enumerating building blocks. It was overcome by introducing a building block filtering procedure that adaptively

identified better-fit short strings. The messy genetic algorithm approach has been tested on two benchmark

problems of water pipeline design and rehabilitation. The results obtained demonstrate that the messy GA

consistently outperforms other GA paradigms. The application of the integrated messy GA technique to the

optimal design and rehabilitation of the Moroccan water distribution system particularly shows its capability of

optimizing a large-scale water distribution system. It is therefore concluded that the messy genetic algorithm

provides a competent approach for the optimization of a water distribution system. The approach allows the least

cost solution to be located more efficiently. It enables the optimal design and rehabilitation solution to be

achieved for a large-scale water distribution system in a rapid manner.

ACKNOWLEDGMENTS

This paper is based on the first author’s Ph.D thesis having been carried out under the supervision of Dr. Angus

Simpson at the University of Adelaide. The financial support from the University is very much acknowledged for

his research.

APPENDIX I. REFERENCES

Alperovits, E. and Shamir, U. (1977). “Design of water distribution systems.” Water Resources Research. Vol.

13, No. 6, 885-900.

 22

Bhave, P. R. (1985). “Optimal expansion of water distribution systems,” J. Environmental Engineering, ASCE,

111(2), 177-197.

Dandy G. C., Simpson A. R., Murphy L. J. (1996). “An improved genetic algorithm for pipe network

optimization,” Water Resources Research, Vol. 32, No. 2, 449-458.

Eiger, G., Shamir, U. and Ben-Tal, A. (1994). “Optimal design of water distribution networks.” Water Resour

Res., 30(9), 2637-2646.

Fujiwara O. and Khang D. B. (1990). “A Two-Phase Decomposition Method for Optimal Design of Looped

Water Distribution Networks,” Water Resources Research. Vol. 26, No. 4, 539-549.

Gessler, J. (1982). “Optimization of pipe networks.” Proc., International Symposium on Urban Hydrology,

Hydraulics and Sediment Control, University of Kentucky, Lexington, Kentucky, 165-171.

Goldberg, D E. (1989). Genetic algorithms in search, optimization and machine learning, Addison-Wesley

Publishing Company, Inc., 412pp.

Goldberg, D. E., Korb, B., & Deb, K. (1989). “Messy genetic algorithms: Motivation, analysis, and first results,”

Complex Systems, 3, 493-530.

Goldberg, D. E., Deb, K., Kargupta, H., & Harik G. (1993). “Rapid, Accurate Optimization of Difficult Problems

Using Fast Messy Genetic Algorithms,” IlliGAL Report No. 93004, Illinois Genetic Algorithms

Laboratory, University of Illinios at Urbana-Champaign, Urbana, IL 61801, USA.

Goulter I. C. (1987). “Current and future use of systems analysis in water distribution network design.” Civ.

Engng Syst., Vol. 4, 174-184.

Goulter I. C. (1992) “Systems Analysis in Water-Distribution Network Design: From Theory to Practice,”

Journal of Water Resources Planning and Management, ASCE , Vol. 118, No. 3, 238-348.

Halhal, D, Walters, G. A., Ouazar, D. and Savic, D. (1997) “Water network rehabilitation with structured

messy genetic algorithm.” Journal of Water Resources Planning and Management, ASCE, Vol. 123,

No. 3, 137-146.

Holland, J.H. (1975). Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor,

Michigan.

Karmeli D., Gadish Y. and Meyers S. (1968). “Design of optimal water distribution networks,” J. of Pipeline

Division, ASCE, Vol. 94, No. PL1, pp. 1-10.

Kim, J. H. and Mays, L. W. (1994) “Optimal rehabilitation model for water-distribution systems.” Journal of

Water Resource Planning and Management, ASCE, Vol.120, No.5, 982-1000.

 23

Lansey, K. E. and Mays, L.W. (1989a). “Optimization model for design of water distribution systems.”

Reliability analysis of water distribution systems, L. R. Mays, ed., ASCE, New York, N. Y.

Lansey, K. E. and Mays, L.W. (1989b). “Optimization Model for Water Distribution System Design”. J. Hydr.

Engrg., ASCE, Vol. 115, No. 10, 1401-1418.

Lippai, I, Heaney, J. P. & Laguna M. (1999). “Robust Water System Design with Commercial Intelligent Search

Optimizers”. J. of Computing in Civil Engrg, ASCE, Vol. 13, No. 3, 135-143.

Morgan D. R. and Goulter I. C. (1985). “Water Distribution Design with Multiple Demands,” Proc., Computer

Application for Water Resources., ASCE, Buffalo, N. Y., 582-590.

Murphy, L.J. and Simpson, A.R. (1992). “Pipe optimisation using genetic algorithms,” Research Report No.

R93, Department of Civil Engineering, University of Adelaide, May, 53pp.

Quindry, G., Brill, E. D., and Liebman, J. C. (1981). “Optimization of looped water distribution systems,” J.

Environmental Engineering Division, ASCE, 107(EE4), 665-679.

Rossman, L. A. (1994) “EPANET user’s manual,” Risk Reduction Engineering Laboratory, Office of Research

and Development, U.S. Environmental Protection Agency, Cincinnati, OH 45268.

Savic D. A. and Walters G. A.(1997). “Genetic Algorithms for the Robust, Least-cost Design of Water

Distribution Networks,” J. Water Resour. Plng. and Mgnmt., ASCE, 123(2), 67-77.

Schaake, J. C. and Lai, D.(1969). “Linear programming and dynamic programming applications to water

distribution network design.” Report 116, Hydrodynamics Laboratory, Department of Civil Engineering,

MIT, Cambridge, Massachusetts.

Simpson A. R., Dandy G. C., Murphy L. J. (1994) “Genetic algorithms compared to other techniques for pipe

optimization.” Journal of Water Resource Planning and Management, ASCE Vol. 120 No. 4, 423-443

Simpson A. R. and Goldberg D. E. (1994). “Pipeline optimization via genetic algorithms: from theory to

practice.” 2nd Int'I. Conf. on Pipeline Systems, Edinburgh, Scotland.

Simpson A.R. & Wu Z.Y. (1997). “Optimal rehabilitation of water distribution systems using a messy genetic

algorithm.” AWWA 17th Federal Convention Water in the Balance, 16-21 March, Melbourne, Australia.

Su, Y. C., Mays, L.W., Duan, N., and Lansey, K.E. (1987). “Reliability-based optimization model for water

distribution system.” J. Hydr. Engrg., ASCE, 114(12), 1539-1556.

Walski T. M. (1985). “State-of-the-Art Pipe Network Optimization.” Proc., Computer Application for Water

Resources., ASCE, Buffalo, N. Y., 559-568.

 24

Walski T. M. (1995). “Optimization and Pipe-Sizing Decisions”. Journal of Water Resource Planning and

Management, ASCE Vol. 121 No. 4, 340-343

Walters, G. A. (1988). “Optimal design of pipe networks: A Review.” Proc. 1st International conference on

computer methods and water resources, Vol. 2 Computational Hydraulics, Morocco, Edited by Ouazar

D., Brebbia C.A. & Barthet H, Computational Mechanics Publications, Southampton Boston.

Wu Z. Y. and Simpson A. R. (1996). “Messy genetic algorithms for optimization of water distribution systems.”

Research Report, R140, Dept. of Civil and Envir. Eng., The University of Adelaide, Australia.

Wu Z.Y. & Larsen C.L. (1996). “Verification of hydrological and hydrodynamic models calibrated by genetic

algorithms.” Proc. of the 2
nd

 International Conference on Water Resources & Environmental Research,

Vol. 2, Kyoto, Japan, pp175-182.

Wu Z.Y. & Simpson A.R. (1997). “An efficient genetic algorithm paradigm for discrete optimization of pipeline

networks.” MODSIM 97, Proc. of International Congress on Modeling and Simulation, Vol. 2, Hobart,

Tasmania, Australia, pp983-988.

Wu Z. Y., Boulos P.F., Orr C.H., and Ro J.J. (2000). “An efficient genetic algorithm approach to an intelligent

decision support system for water distribution networks.” To be appeared in Proc. of Hydro Informatics

2000, 23-27 July, Iowa, IA, U.S.A.

 25

APPENDIX II. NOTATION

The following symbols are used in this paper:

)P,E,D(C


= cost of a design and rehabilitation solution;

ck(dk) = cost per unit length of the k-th pipe diameter;

ck(pk) = cost of the k-th pump capacity;

ck(tk) = cost of the k-th tank size;

ck(vk) = cost of the k-th pressure regulating valve size;

ck(ek, dk) = cost per unit length of the k-th rehabilitation action ek for a pipe diameter of dk.;

crep(j) = cost of repairing a break for pipe j;

D


 = decision variables of new pipe diameter;

E


 = decision variables of pipe rehabilitation actions;

)(, tH ji = hydraulic head at junction i for demand loading case j at time t;

min

, jiH = minimum required hydraulic pressures at junction i for demand loading case j;

max

, jiH = maximum allowable hydraulic pressures at junction i for demand loading case j;

)(, tHG ji = hydraulic gradient (slope) of pipe i for demand loading case j at time t;

max

, jiHG = maximum allowable hydraulic gradient of pipe i for demand loading case j;

J(t) = pipe break rate in year t;

J0 = pipe break rate in year 0;

P


 = decision variables of pump capacities;

Pmink = minimum pump horse power;

Pmaxk = maximum pump horse power ;

Pc = probability of cut operator;

Pk = bit-wise cut probability;

Ps = probability of splice operator;

T


 = decision variables of tank sizes;

 V


 = decision variables of valve sizes;

 26

)(, tV ji = flow velocity of pipe i for demand loading case j at time t;

max

, jiV = maximum allowable flow velocity of pipe i for demand loading case j;

VS = decision variables of valve settings;

VSmink = minimum required valve setting for valve k;

VSmaxk = maximum valve setting for valve k.

in

kitankV , = inflow to tank k under demand loading case i;

out

kitankV , = outflow from tank k under demand loading case i;

Vk = flow balance tolerance of tank k;

 = length of the string;

 = number of common genes in the two strings;

nn = fitness of string nn;

 27

Table 1 Binary string representation of possible rehabilitation actions for the two-reservoir network

Binary string Rehabilitation action index Possible rehabilitation actions

00 0 Leaving a pipe

01 1 Duplicating a pipe

10 or 11 2 or 3 Cleaning a pipe

 28

Table 2 Binary string representation of available pipe sizes for the two-reservoir network

Binary sub-string

coding the pipe size

Corresponding

diameter index

Available pipe diameters

(mm)

000 0 152

001 1 203

010 2 254

011 3 305

100 4 356

101 5 407

110 6 458

111 7 509

 29

Table 3 A mapping from the sample string to its corresponding design and rehabilitation solution

Pipes Variables Sub-string String values Solution values

New pipe 1 Diameter 111 7 509

New pipe 2 Diameter 101 5 407

New pipe 3 Diameter 110 6 458

New pipe 4 Diameter 001 1 203

New pipe 5 Diameter 010 2 254

old pipe 1
Action 00 0 No change

Diameter 111 7 No change

old pipe 2
Action 01 1 Parallel

Diameter 101 5 407

old pipe 3
Action 11 2 Clean

Diameter 010 2 No change

 30

Table 4 Statistic results over ten runs of different genetic algorithm paradigms for optimization of the

two-reservoir network

Genetic algorithm

paradigms

Simple GA (Simpson et al. 1994; Simpson &

Goldberg 1994)

Messy genetic algorithm

Roulette

selection

Tournament selection Building block

enumeration

Building block

filtering S = 2 S = 5 S = 20

Success runs (out of

10 runs)
6 10 10 9 10 10

Avg. evaluations 14,697 8,800 4,300 2,900 6,181 2,400

Avg. least cost

($million)
1.7773 1.7503 1.7503 1.7600 1.7503 1.7503

 31

Table 5 Results of the messy GA runs compared with the improved GA

Improved GA (Dandy et al.1996) Messy GA

GA

runs

Lowest cost

($million)

 Achieved at

Evaluations

mGA

runs

Penalty

factor ($/ft)

Lowest cost

($million)

 Achieved at

evaluations

1 38.80 96,750 1 9,000,000 38.80 49,587

2 39.06 137,400 2 13,000,000 39.06 42,787

3 38.80 151,400 3 11,000,000 38.80 48,387

4 39.06 145,700 4 15,000,000 40.17 53,187

5 39.17 187,700 5 7,000,000 38.64* 48,187

 Average = 143,790 Average = 48,427

* The hydraulic pressure constraint at the junction 15 is violated by 0.02 (ft).

 32

Table 6 Comparison of messy GA designs with previous GA solutions

Duplicated

Pipe No.

Optimal diameters (in.)

Improved GA (Dandy et al. 1996) Messy GA

GA 1 GA 2 GA 3 mGA 1 mGA 2 mGA 3

[1] 0 0 0 0 0 0

[2] 0 0 0 0 0 0

[3] 0 0 0 0 0 0

[4] 0 0 0 0 0 0

[5] 0 0 0 0 0 0

[6] 0 0 0 0 0 0

[7] 0 144 156 0 144 144

[8] 0 0 0 0 0 0

[9] 0 0 0 0 0 0

[10] 0 0 0 0 0 0

[11] 0 0 0 0 0 0

[12] 0 0 0 0 0 0

[13] 0 0 0 0 0 0

[14] 0 0 0 0 0 0

[15] 120 0 0 120 0 0

[16] 84 96 96 84 96 96

[17] 96 108 96 96 108 96

[18] 84 72 84 84 72 84

[19] 72 72 72 72 72 72

[20] 0 0 0 0 0 0

[21] 72 72 72 72 72 72

Cost

($million)

38.80 39.06 39.17 38.80 39.06 38.64*

* The hydraulic pressure constraint at the junction 15 is violated by 0.02 (ft).

 33

Table 7 Cost of optimal rehabilitation strategies of the Moroccan network

Messy GA

solutions

Penalty

factor

Repair cost Relining

cost

Replace-

ment cost

Duplication

cost

New pipe

cost

Total

cost

fmGA1 550,000 235,352 41,600 29,020 497,680 309,200 1,112,852

fmGA2 750,000 221,087 105,900 0 519,150 301,100 1,147,237

fmGA3 500,000 215,266 82,500 14,740 526,100 309,200 1,147,806

fmGA4 700,000 230,839 79,500 21,600 518,180 309,200 1,159,319

fmGA5 600,000 224,083 54,600 0 606,480 309,200 1,194,363

fmGA6 650,000 195,863 173,300 12,100 515,880 309,200 1,206,343

fmGA7 800,000 158,192 277,200 79,120 543,570 326,000 1,384,082

fmGA8 1,000,000 213,990 67,510 22,400 614,380 477,500 1,395,780

 34

Table 8 Pressure heads and excess at critical nodes of Moroccan network (EPANET)

Optimal

solutions

Node 59 Node 69 Node 87 Node 111 Evaluations

achieved head

(m)

excess

(m)

head

(m)

excess

(m)

head

(m)

excess

(m)

head

(m)

excess

(m)

fmGA1 20.09 0.09 20.01 0.01 20.13 0.13 20.17 0.17 630,290

fmGA2 20.40 0.40 20.24 0.24 20.02 0.02 20.45 0.45 571,290

fmGA3 20.92 0.92 20.18 0.18 20.03 0.03 20.08 0.08 566,290

fmGA4 20.54 0.54 19.99 -0.01* 20.02 0.02 20.00 0.00 586,290

fmGA5 20.13 0.13 20.017 0.017 20.01 0.01 20.87 0.87 430,290

fmGA6 20.07 0.07 20.00 0.00 20.20 0.20 19.99 -0.01 575,290

fmGA7 20.54 0.54 20.12 0.12 20.02 0.02 20.25 0.25 599,290

fmGA8 20.24 0.24 20.04 0.04 20.48 0.48 21.42 1.42 906,970

* A negative value implies the pressure deficit.

 35

node

existing system

existing pipe to be duplicated, cleaned or left

new pipes

Pipes: [1],356,75 [pipe number], diameter(mm), Hazen-Williams roughness C

 Note. 1. All pipe lengths are 1609m, except pipe[1]=4828m
 and pipe[4]=6437m.

 2. C=120 for new pipes and cleaned pipes.
Nodes: 2, EL320.04 node number, node elevation(m)

[1
],

3
5
6
,7

5
Reservoir

Tank

1, EL365.76

5, EL371.86

2, EL320.04 3, EL326.14 4, EL332.23

[4
],

2
5
4
,8

0

[2],254,80 [3],254,80

6, EL298.70
7, EL295.66

8, EL292.61

9, EL289.56 10, EL289.56 11,EL292.61 12, EL289.56

[5
],

2
5
4
,8

0

[7],203,100

[9
],

2
5
4
,8

0

[12],203,100

[1
0
],

1
0
2
,1

0
0

[6]

[8]

[11]

[13] [14]

Figure 1 Two-reservoir Network

 36

1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0

coding for 5 new pipes coding for 3 existing pipes

d7d1 e3e2e1 d6d5 d8d3d2 d4

one genotype

one phenotype

old pipe 1 old pipe 2 old pipe 3pipe 1 pipe 2 pipe 3 pipe 4 pipe 5

Figure 2 A sample string representation of one possible solution for the design of five new pipes and

rehabilitation of three existing pipes

 37

1E+00

1E+03

1E+06

1E+09

1E+12

1E+15

1E+18

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Order of building blocks

In
it

ia
l
p

o
p

u
la

ti
o
n

 s
iz

e

l = 20

l = 40

l = 60

l = 80

l = 100

Figure 3 Initial population sizes required by original messy GA using complete enumeration

 38

era = 0;

while (era < max era){

 initializing population;

 evaluating population;

 while (current string length > desired building block length){

 //building block filtering phase;

 selecting competitive strings;

 deleting genes;

 evaluating new strings

 }

 generation = 0;

 while (generation < max generation){

 //juxtapositional phase;

 selecting competitive strings;

 cut and splice operations;

 mutation operations;

 evaluating new population;

 generation = generation + 1;

 }

 era = era + 1;

}

Figure 4 A summary of the steps in a messy genetic algorithm

 39

Figure 5 New York City water supply tunnels (Dandy et al. 1996)

 40

20

40

60

80

100

120

140

0 20000 40000 60000 80000 100000

Evaluation numbers

L
ea

st
 c

o
st

 i
n

 e
a

ch
 g

en
er

a
ti

o
n

 (
$

m
il
li
o

n
)

Original messy GA

Improved GA (Dandy et al. 1996)

Figure 6 Comparison of convergence rates of the improved GA (Dandy et al. 1996) and the messy GA for

the New York water tunnels problem

 41

1

10338

3941

40

100

98

99

79

57

101

47

45

46

50

43

42

37

77

5556

78

113

109

29

30

27

28
33

32

31

54
76

53

49

48

51

52

34

35 36

26

16
1575

96 97

14

8
7481

13

9

114

115

82

107

4

59

83

5

73

1046

10
44

108

11

17

112

18

19

72

7
110

84

102

86
85 12

82

105

87 61

2021

58

106

60

94

95

22

23

24

25

90

89

63

92

93

69

91

70

68

67

66

71

64 88

65

111

Existing pipe

New pipe

499.94

2

3

80

Figure 7 Layout of a Moroccan network

 42

Figure 8 Comparison of convergence rates of the simple GA and the messy GA for the optimization of the

Moroccan water distribution system

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700

Number of evaluations (in 1000)

L
ea

st
 c

o
st

 o
f

ea
c
h

 g
en

e
r
a

ti
o

n
 (

in
 m

il
li

o
n

)

Messy GA

Simple GA

