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ocean wave spectra in the marginal ice zone
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A theoretical model is used to study wave energy attenuation and directional spreading
of ocean wave spectra in the marginal ice zone (MIZ). The MIZ is constructed as an array
of tens of thousands of compliant circular ice floes, with randomly selected positions and
radii determined by an empirical floe size distribution. Linear potential flow and thin
elastic plate theories model the coupled water-ice system. A new method is proposed to
solve the time-harmonic multiple scattering problem under a multi-directional incident
wave forcing with random phases. It provides a natural framework for tracking the evo-
lution of the directional properties of a wave field through the MIZ. The attenuation
and directional spreading are extracted from ensembles of the wave field with respect to
realizations of the MIZ and incident forcing randomly generated from prescribed distribu-
tions. The averaging procedure is shown to converge rapidly so that only a small number
of simulations need to be performed. Far field approximations are investigated, allowing
efficiency improvements with negligible loss of accuracy. A case study is conducted for a
particular MIZ configuration. Observed exponential attenuation of wave energy through
the MIZ is reproduced by the model, while the directional spread is found to grow linearly
with distance. Directional spreading is shown to weaken when the wavelength becomes
larger than the maximum floe size.

Key words:

1. Introduction

There is now growing evidence that ocean surface waves have a significant impact
on the seasonal advance and retreat of sea ice in Arctic and Southern Oceans. Satellite
observations have shown that the energy content of wave spectra in the polar oceans
has been trending upwards in the last three decades, more significantly than at lower
lattitudes (Young et al. 2011). Recent in situ observations and hindcasts of energetic
wave fields at high lattitudes (Thomson & Rogers 2014; Kohout et al. 2014; Collins et al.
2015) support these long-term trends and suggest an increasing impact of waves on the
morphology of ice-covered oceans. In particular, waves contribute to the rapid decline of
sea ice extent and thickness observed in the Arctic region (Laxon et al. 2013; Meier et al.
2013) by fracturing the elastic ice cover under sufficient flexural load (see Squire et al.
1995; Squire 2007, for reviews), and therefore accelerating the melting of sea ice. This
contribution is most pronounced within, say, 100 km of the ice edge, a region referred to
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as the marginal ice zone (MIZ), which typically consists of a disordered array of floating
ice floes with various shapes and characteristic horizontal dimensions O (10–100m).
The presence of a broken-up ice cover with a certain ice concentration (the fraction of

sea surface covered by ice), thickness and floe size distribution (FSD) governs the evo-
lution of wave spectral properties (energy content, frequency and direction) within the
MIZ. When ocean waves enter an MIZ they are attenuated and, for modest seas, much
evidence now supports the assertion that ocean wave energy decays at an exponential
rate with distance from the ice edge (see Squire & Moore 1980; Wadhams et al. 1988;
Meylan et al. 2014, for field measurements in both the Arctic and Southern Oceans).
Moreover, the rate of attenuation tends to increase with decreasing wave period. Con-
comitantly, the range of directions over which waves travel in the MIZ appears to increase
with distance from the ice edge, so that the the wave spectrum tends to become fully
isotropic. Directional spreading in the MIZ has been observed during the field work of
Wadhams et al. (1986) and can also been inferred from SAR imagery (see, e.g., Liu et al.
1991b). Both wave energy attenuation and directional spreading are governed by a com-
bination of scattering effects and dissipative processes. Wave energy dissipation occurs
in many different forms, e.g. collisions (Shen & Squire 1998; Bennetts & Williams 2015),
turbulence (Liu & Mollo-Christensen 1988), wave overwash (Bennetts et al. 2015; Skene
et al. 2015), floe breakup (Williams et al. 2013a) and inelastic bending (Squire & Fox
1992). Estimating their effects on wave energy attenuation is a difficult task, as most are
non-linear processes. Although simplified empirical parameterizations have been devel-
oped to model the MIZ as a homogeneous linearly viscoelastic layer (Wang & Shen 2010),
their validity is unresolved and calibration presents a major challenge that requires more
data than are currently available (Mosig et al. 2015). In contrast, wave scattering is con-
servative and redistributes the wave energy over the directional domain. The exponential
attenuation of wave energy and directional spreading is a direct consequence of linear
multiple scattering theory for waves propagating in random media. This effect has been
observed and modelled in many areas concerned with such processes (see, e.g., Ishimaru
1978).
Herein a three-dimensional model of wave energy attenuation and directional spread-

ing in the MIZ is proposed. Our goal is to reproduce observed wave attenuation and
directional spreading of ocean wave spectra as they propagate through the MIZ, by mod-
elling the random nature of open ocean sea states and the disorder of the distribution
of ice floes in the MIZ. The primary outcome will be an improved parameterization of
wave/sea ice interactions in ice/ocean models (IOMs), e.g. TOPAZ, and spectral wave
models (SWMs) such as Wavewatch III R⃝ or WAM. We plan to use our model simulations
to generate attenuation and directional spreading parameters in the form of look-up ta-
bles. We note that at present only two-dimensional approaches (i.e. those with one wave
direction) are employed to model wave energy attenuation in such large scale models,
with no exchange of energy between different wave directions (see Rogers & Orzech 2013;
Doble & Bidlot 2013; Williams et al. 2013a,b, for implementation in SWMs and IOMs).
Unidirectional wave energy attenuation in the MIZ, i.e. neglecting directional spread-

ing, due to multiple scattering by arrays of ice floes has been described theoretically a
number of times within the framework of linear potential flow theory (see Squire et al.
1995; Squire 2011, for reviews). The most common representation of each floe is a thin
elastic plate. For example, Kohout & Meylan (2008) considered transmission of waves
through multiple elastic plates floating with no submergence, using a two-dimensional
model with one vertical dimension and one horizontal dimension. They used ensemble
averaging to show that selecting floe lengths and floe spacings randomly from Rayleigh
distributions leads to exponential attenuation of the proportion of mean wave energy
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transmitted with respect to the number of floes, and that the effective rate of atten-
uation increases with decreasing wave period. These behaviours mirror those of ocean
waves in the MIZ. Kohout & Meylan further showed that their scattering model predicts
attenuation rates comparable to those measured in the MIZ for mid-range wave peri-
ods (approximately 6 to 15 s) but that it underpredicts the attenuation rates of longer
period waves by at least an order of magnitude. Bennetts & Squire (2012b) derived a
semi-analytic expression for the rate of exponential attenuation predicted by the two-
dimensional model based upon the reflection produced by a solitary floe, assuming the
wave phase between floes is random, as opposed to varying the floe lengths and spacings.
They also included a parameterization of wave energy dissipation due to interaction with
the floes via the viscoelastic plate model of Robinson & Palmer (1990) to correct for
attenuation of long-period waves. Bennetts & Squire (2012a) subsequently went on to
consider how sensitive the rate of exponential decay was to physical parameters in their
model, with the direct purpose of intelligently assimilating wave-ice interactions in a con-
temporary IOM for the first time. Williams et al. (2013a,b) used the model of Bennetts
& Squire (2012b) to move towards this goal. Although these authors considered wave
vectors from different directions, the scattering was inherently one-dimensional with no
changes to the directional structure of the wave spectrum being possible.
Several papers have outlined three-dimensional scattering models (two-dimensional

waves) to predict attenuation through the MIZ. However, for the thousands of floes
needed to simulate the MIZ, the computational expense of the additional dimension has
led to the use of approximations and/or simplifications of the geometry. For example,
Meylan et al. (1997) approximated the wave interactions between floes using the transport
theory of radiative transfer in random media (based on the Boltzman equation; see
Ishimaru 1978), which does not resolve wave phases. They used the solitary circular
elastic floe model of (Meylan & Squire 1996) to calculate the scattering kernel. They
showed that, without an energy dissipation term, i.e. for scattering alone, wave energy
attenuates for a finite distance only, after which it remains constant. Meylan & Masson
(2006) showed that the model of Meylan et al. (1997) is almost identical to that of
Masson & Leblond (1989), who restricted their ice floe model to be a floating rigid
cylinder. Bennetts et al. (2010) proposed a model based on full potential flow theory,
using the methods devised by Bennetts & Squire (2009) and Peter & Meylan (2009).
They considered square elastic floes in addition to circular floes, but found the shape
had minimal effect on predicted attenuation rates. They showed the model gave excellent
agreement with the measurements of Squire & Moore (1980) for mid-range periods but,
again, significantly underestimated the attenuation on long period waves. Further, they
studied evolution of the directional spectrum of plane incident waves through the MIZ.
However, for computational expediency, they imposed artificial periodic repetitions of a
floe or groups of floes. This meant the wave field was composed of plane waves travelling
in a handful of different directions, where the exact number changed at certain wave
periods. This led to artificial jumps in the attenuation rate with respect to wave period
and no spreading of energy over the directional range was observed.
The three-dimensional model of wave attenuation and directional spreading in the MIZ

proposed here is a solution of the full linear equations of potential flow theory and does
not invoke artificial periodicity on the geometry. It extends the solution method proposed
by Montiel et al. (2015a) for a two-dimensional problem of acoustic wave propagation
through a large, finite array of identical circular obstructions. We include a realistic
power-law FSD, which is based on the observational studies of Rothrock & Thorndike
(1984) and Toyota et al. (2006, 2011). Moreover, we model the incident wave forcing as a
random sea state with a prescribed directional energy distribution. Ensemble averaging
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is then used to compute the wave energy attenuation and directional spreading through
the MIZ.

2. Preliminaries

2.1. Governing equations

Consider a three-dimensional seawater domain with infinite horizontal extent and con-
stant finite depth, h say. Points in the water are located by Cartesian coordinates (x, y)
in the horizontal plane and z in the vertical direction positively oriented upwards. We
assume that the free surface at rest coincides with the plane z = 0 so the seabed is
defined by z = −h. Irregularities in the seabed are not considered here, as h is assumed
to be large compared to the wavelength throughout this study.
We seek to model the propagation of a directional ocean wave spectrum through a MIZ

composed of thousands to tens of thousands of randomly positioned floating, compliant
ice floes with circular shape and uniform thickness. We only consider circular ice floes
for simplicity, conjecturing that the shape of the floes has a small effect on the mean
properties of wave propagation through large random arrays.
The solution method described in § 3 requires clustering the array of floes into multiple

slabs. Without loss of generality, we align the slabs with the y-axis. Let S denote the
number of slabs, and let slab q be bounded by ξq−1 ⩽ x ⩽ ξq, 1 ⩽ q ⩽ S, have width
Lq = ξq − ξq−1 and contain Nq floes. A sketch of the geometry is given in figure 1. Note
that a floe belongs to a slab if its centre is in the slab bounds.
Ice floe radii aqp, 1 ⩽ q ⩽ S, 1 ⩽ p ⩽ Nq, are drawn from a prescribed power-law

FSD as observed in the field (Toyota et al. 2006). A parameterization of the FSD will
be described in § 5.2. Further, we assume that all floes have constant thickness D and
uniform density ρ ≈ 922.5 kgm−3. We do not include floes with different thickness and
densities in the model in order to limit the number of parameters, although the method
we propose can accommodate these extensions.
We consider a multi-directional wave field with small amplitude compared to the wave-

length and prescribed angular frequency ω. The water is approximated as an inviscid
and incompressible fluid with constant density ρ0 ≈ 1025 kgm−3 and irrotational flow.
The linear theory of water waves can then be used to describe the water motion. As-
suming time-harmonic conditions, we express the velocity field in the water domain as
(∇, ∂z)Re

{
(g/ iω)ϕ(x, y, z) e− iωt

}
, where ∇ ≡ (∂x, ∂y) and g ≈ 9.81m s−2 is accelera-

tion due to gravity. The complex-valued (reduced) potential, ϕ, is governed by Laplace’s
equation

∇2ϕ+ ∂2
zϕ = 0 (−∞ < x, y < ∞,−h < z < −d) , (2.1)

where z = −d describes the upper boundary of the fluid domain, such that d = 0 when a
free surface is present and d = (ρ/ρ0)D (i.e. the Archimedean draught) when the surface
is covered by a floe. On the impermeable seabed, we prescribe a no-normal-flow condition

∂zϕ = 0 (z = −h) . (2.2)

In fluid regions bounded above by a free surface (i.e. d = 0), the potential satisfies the
boundary condition

∂zϕ = αϕ (z = 0), (2.3)

where α = ω2/g is a frequency parameter.
We prescribe an ambient incident wave field ϕIn travelling in the positive x-direction

and defined by a superposition of plane waves with amplitudes that depend continuously
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Figure 1. Schematic of the geometry in the horizontal plane z = 0.

on the angle of incidence τ (with respect to the x-axis). We express it as

ϕIn(x, y, z) = ζ0(z)

∫ π/2

−π/2

AIn(τ) e ik0((x−ξ0) cos τ+y sin τ) dτ, (2.4)

where the incident wave directional spectrum AIn(τ) characterizes the angular distribu-
tion of ambient wave amplitude at x = ξ0. The function ζ0(z) = cosh k0(z+ h)/ cosh k0h
describes the vertical motion of the incident wave field. The quantity k0 denotes the prop-
agating wavenumber for a wave travelling in the free-surface region and will be defined
shortly. Scattering of the ambient wave field by the array of floes gives rise to reflected
and transmitted wave components that are expressed as

ϕ(x, y, z) ≈ ϕIn(x, y, z) + ζ0(z)

∫ π/2

−π/2

AR(τ) e ik0(−(x−ξ0) cos τ+y sin τ) dτ (2.5a)

as x → −∞ and

ϕ(x, y, z) ≈ ζ0(z)

∫ π/2

−π/2

AT(τ) e ik0((x−ξS) cos τ+y sin τ) dτ (2.5b)

as x → ∞. The reflected and transmitted wave directional spectra, AR(τ) and AT(τ),
are unknowns of the problem. They characterize the angular distribution of the reflected
and transmitted amplitudes at x = ξ0 and x = ξS , respectively.
We model the motion experienced by the ice floes using the Kirchhoff-Love theory of

thin elastic plates, which assumes that thickness is small compared to diameter and ver-
tical deformations are small relative to thickness. At the water-floe interface the potential
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then satisfies

(β∇4 + 1− αd)∂zϕ = αϕ (z = −d), (2.6)

for a floe with thickness D and draught d = (ρ/ρ0)D. The stiffness parameter β = F/ρ0g
is defined in terms of the flexural rigidity of the plate F = ED3/12(1 − ν2), where
E ≈ 6GPa is a typical value for the effective Young’s modulus of sea ice (Mellor 1986)
and ν ≈ 0.3 denotes Poisson’s ratio.
We complete the description of the ice floe model by imposing free edge conditions.

These are most conveniently expressed using the polar coordinates (r, θ) with origin at
the centre of the floe. For a floe of radius a, we have[

r2∇2
r,θ − (1− ν)

(
r∂r + ∂2

θ

)]
∂zϕ = 0 (r = a) (2.7a)

and [
r3∂r∇2

r,θ + (1− ν) (r∂r − 1) ∂2
θ

]
∂zϕ = 0 (r = a), (2.7b)

where ∇r,θ ≡ (∂r + 1/r, (1/r)∂θ). In addition, we assume that the floes do not respond
in surge and sway, so that

∂rϕ = 0 (r = a, −d < z < 0). (2.7c)

2.2. Scattering by a single floe

Each floe scatters the local wave field incident on it, which is the combination of the
ambient incident wave field and the wave fields scattered by all other floes. For a given
floe, which, as above, is assigned the polar coordinate system (r, θ), these local incident
and scattered wave potentials are expressed as the truncated eigenfunction expansions

ϕI(r, θ, z) ≈
M1∑
m=0

ζm(z)

N∑
n=−N

am,nJn(kmr) e inθ (r > a) (2.8a)

and

ϕS(r, θ, z) ≈
M1∑
m=0

ζm(z)

N∑
n=−N

bm,nHn(kmr) e inθ, (r > a) (2.8b)

respectively, which are solutions to (2.1)–(2.3) in cylindrical coordinates (see, e.g., Peter
et al. 2003, for a detailed derivation). We have introduced Jn and Hn to denote the Bessel
and Hankel functions of the first kind of order n, respectively. The amplitudes am,n and
bm,n, 0 ⩽ m ⩽ M1, −N ⩽ n ⩽ N , are unknowns of the scattering problem. We define
the vertical modes as ζm(z) = cosh km(z + h)/ cosh kmh. The wavenumbers km, m ⩾ 0,
are the solutions k of the dispersion relation for an open water region, that is

k tanh kh = α. (2.9)

We denote the positive real root of (2.9) by k0. It is associated with a wave mode
travelling in the horizontal plane. As water depth h was assumed to be large compared
to the wavelength, we have k0 ≈ α, so that the wavelength is approximately independent
of h. All other km, m ⩾ 1, are purely imaginary with positive imaginary part and are
ordered such that − ikm < − ikm+1. They are associated with evanescent vertical wave
modes which decay exponentially in the horizontal directions, such that the rate of decay
increases for increasing m. In contrast to k0, the values of km, m ⩾ 1, depend on h. Note
that the sums in (2.8) are truncated versions of the corresponding series expansions, with
M1 and N chosen in order to obtain a sufficient degree of accuracy (see below).
Montiel et al. (2013) proposed a solution method for the single floe scattering problem.

Using equations (2.1), (2.2), (2.6), (2.7a) and (2.7b) they expressed the potential below
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the floe (i.e. r < a) as a truncated series of eigenfunctions similar to (2.8a), but with
different wavenumbers characterizing wave modes in the ice-covered water domain. They
then used a version of the eigenfunction matching method (EMM) which accommodates
the draught of the floe, through (2.7c), in order to extend the zero-draught EMM of Peter
et al. (2003). The EMM produces a mapping between the amplitudes am,n and bm,n for
each angular mode n; the axisymmetry of the problem decouples the angular modes. In
matrix form, the mapping is expressed as

bn = Snan, (2.10)

for −N ⩽ n ⩽ N , where an and bn are column vectors of size M1 + 1 containing the
amplitudes am,n and bm,n, respectively, for a given n. Matrices Sn are square of size
M + 1 and form the diffraction transfer matrix (DTM) of the floe when concatenated
in a block diagonal matrix. Extensions of our model to arbitrarily-shaped floes could
be accommodated following Peter & Meylan (2004) who devised a numerical method to
compute the DTM of such floes. Note that in this case the DTM loses its block-diagonal
property.
We choose the truncation limits N and M1 to achieve three digit accuracy for the

scattered energy. In the regime of interest here, k0a =O(1), this typically requires M1 =
O(100) vertical modes, and N =O(1) angular modes, as demonstrated by Montiel (2012).

2.3. Multiple scattering and limitations of the direct approach

Our goal is to solve the wave scattering problem deterministically for a large number of
floes. Apart from truncations, no approximation will be made with regards to multiple
scattering by the array, so that the scattered field due to each floe acts as an incident
field on all the other floes.
The so-called self-consistent approach (or direct matrix method) provides an exact

representation of multiple scattering processes and was introduced in the context of
ocean wave interactions with floating structures by Kagemoto & Yue (1986), noting that
this approach is standard in many areas concerned with wave scattering by arrays of
scatterers (see, e.g., Martin 2006). The method is briefly summarized below and the
reader is referred to the investigations cited here for additional details (see also Peter &
Meylan 2004, in the context of wave interactions with elastic ice floes).

The method describes the wave forcing ϕ
(p)
I incident upon a floe p, which has its centre

located at (x, y) = (xp, yp), as the coherent sum of the ambient incident wave ϕIn and
the scattered wave fields originating from all the other floes, i.e.

ϕ
(p)
I = ϕIn +

∑
j, j ̸=p

ϕ
(j)
S , (2.11)

where ϕ
(j)
S is the scattered wave potential due to a floe j, with centre located at (x, y) =

(xj , yj), and the sum over j runs for all floes in the array except p. The incident and
scattered wave components are expressed in terms of the eigenfunction expansions (2.8),
using the relevant local polar coordinates (rp, θp), defined by (x, y) = (xp+rp cos θp, yp+

rp sin θp). Subsequently, the expressions for the scattered waves ϕ
(j)
S in (2.11) are mapped

into the local coordinates (rp, θp) of floe p. Application of the (reduced) boundary con-
dition (2.10) around floe p then yields the following matrix equation

b(p)
n −

∑
j, j ̸=p

N∑
s=−N

S(p)
n T(j,p)

n,s b(j)
s = S(p)

n f (p)n , (2.12)

which can be obtained for all floes p. Numerical experiments (see § 4) have shown that
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O(1) vertical modes only are necessary in (2.8) to resolve wave interactions in an array of
floes accurately, assuming the single floe solutions are obtained with sufficient accuracy
(which requires M1 =O(100) vertical modes). The vectors of scattered wave amplitudes

b
(p)
n and matrices S

(p)
n in (2.12) are then chosen to have size M2 + 1, where M2 =O(1).

They are obtained by truncating the corresponding quantities of size M1 + 1 defined for
the single floe solution.

The resulting system of equations is solved for the scattered wave amplitudes b
(p)
n

for all floes p and angular modes n. Here the forcing vectors f
(p)
n , −N ⩽ n ⩽ N ,

contain the amplitudes of the ambient incident potential (2.4) expressed in the lo-

cal cylindrical coordinates of floe p. Square matrices S
(p)
n are analogous to the matri-

ces defined in (2.10) for each floe p. We have also introduced the diagonal matrices

T
(j,p)
n,s = diag

{
Hs−n(kmRj,p) e

i(s−n)ϖj,p , 0 ⩽ m ⩽ M2

}
of size M2+1, where (Rj,p, ϖj,p)

are the polar coordinates of the centre of floe p in the local system associated with floe
j. These matrices describe the change of local polar coordinates from floe j to floe p and
their entries are calculated using Graf’s addition theorem (Abramowitz & Stegun 1970),
which couples the angular modes.
The size of system (2.12) grows linearly with the number floes in the array and di-

rect inversion will lead to a computational cost increasing with the cubic power of the
number of floes. The order-of-scattering method, based on the original paper by Twer-
sky (1952), has been used to approximate the solution of (2.12) by successive orders of
multiple scattering events (see, e.g., Ohkusu 1974; Mavrakos & Koumoutsakos 1987).
Mathematically, this is equivalent to solving (2.12) using an iterative scheme, e.g. the Ja-
cobi or Gauss-Seidel method. This method usually leads to performance improvements,
although computational cost is strongly affected by the concentration of floating bodies
in the array (Kagemoto & Yue 1986). Numerical experiments conducted by the authors
have shown that direct inversion or iterative approaches are limited to arrays of O(100)
floes.

3. Slab-clustering method

We remedy the practical shortcoming of the self-consistent approach by implementing
the slab-clustering method, described by Montiel et al. (2015a) for a cognate canonical
acoustic problem. While much of the method presented by Montiel et al. may be applied
straightforwardly to the present problem, the existence of evanescent vertical modes adds
a complication that needs to be dealt with carefully.
The method consists of dividing the array of floes into slabs as described in §2.1 We

seek a solution for the wave field between two adjacent slabs as the coherent superposition
of the left-travelling and right-travelling directional wave fields. In its most general form,
the field at x = ξq can be expressed as

ϕq(x) = ϕ(+)
q (x) + ϕ(−)

q (x), (3.1)

where

ϕ(±)
q (x) ≈

M2∑
m=0

ζm(z)

∫
Γm

(
A±

m;q(χ) e
ikm(±(x−ξq) cosχ+y sinχ)

)
dχ, (3.2)

for 0 ⩽ q ⩽ S. The A±
m;q(χ) represent rightward (+) and leftward (−) amplitude functions

corresponding to wave modes travelling (m = 0) and decaying (m ⩾ 1). The amplitudes
A+

m;q−1 and A−
m;q are incident on slab q from its left and right, respectively, and A−

m;q−1

and A+
m;q are scattered by it to the left and right, respectively.
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Figure 2. The left-hand panel shows the integration contours Γ0 (blue solid) and Γe (green
dashed) in the complex χ-plane, which describe the domains of the amplitude functions A±

m;q(χ)
for travelling (m = 0) and evanescent (m ⩾ 1) vertical modes, respectively. The arrows indicate
the directions of the contours. The right-hand panel shows the corresponding truncated contours

Γ̃0 (blue solid) and Γ̃e (green dashed) used in the numerical approximation discussed in § 3.2.

The integration contour Γm differs for the travelling (m = 0) and evanescent (m ⩾ 1)
modes. For a travelling mode, it runs from −π/2 + i∞ to π/2− i∞ through the origin
and is parameterized by

χ(ς) =

 −π/2− i(1 + ς) (−∞ ⩽ ς ⩽ −1),
π/2ς (−1 ⩽ ς ⩽ 1),

π/2 + i(1− ς) (1 ⩽ ς ⩽ ∞).
(3.3)

The contour Γ0 is depicted in figure 2 as a blue solid line (see the left-hand panel). The
integration contours Γm (m ⩾ 1) for the evanescent vertical modes are all identically
equal to Γe, which spans the imaginary axis from i∞ to − i∞, as shown in figure 2
(see green dashed line in the left panel). The integration contours Γ0 and Γe arise from
decomposing a surface wave source into a superposition of plane waves continuously
depending on the complex angular parameter χ, as will be shown in § 3.1.
The complex branches of Γ0 correspond to wave components that decay exponentially

in the x-direction. The rate of decay increases as the imaginary components of χ get
larger. In this regard, these components are similar to the evanescent modes.
We introduce an approximation for computational purposes, by truncating Γe and

the complex branches of Γ0 to ±γ i and ±(π/2 − γ i), respectively, where γ ⩾ 0. The

truncated contours are denoted by Γ̃0 and Γ̃e and are shown in the right-hand panel of
figure 2. Note that the special case γ = 0 represents a far-field approximation, for which
all x-decaying wave components are neglected in interactions between slabs. Its validity
depends on the spacing between slabs and will be discussed further in § 4.

3.1. Reflection and transmission by a single slab

Montiel et al. (2015b) derived a set of relationships (for the special case γ = 0) between
the incident and scattered amplitude functions A±

0;q(χ) on either side of a given slab q
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as a result of reflection and transmission. Here we extend these relationships to include
evanescent vertical modes (i.e. m ⩾ 1) and x-decaying wave components (i.e. γ > 0).
We consider the scattering by slab q due to the incident forcing from its left-hand

side, ϕ
(+)
q−1, only. The response to incident forcing from its right-hand side, ϕ

(−)
q , follows

similarly, and the total response to forcing from both sides is calculated via superposition.
The forcing field may be expressed in the local polar coordinates of floe p analogously

to (2.8b). For each angular mode n and vertical mode m, the forcing amplitudes are then
given by [

f (p)n

]
m

= in
∫
Γm

A+
m;q−1(χ) e

− inχ e ikm((xp−ξq−1) cosχ+yp sinχ) dχ. (3.4)

The self-consistent method outlined in §2.3 is used to solve the multiple scattering
problem within the slab. It results in a system of equations analogous to (2.12) which
yields the mapping

b[q] = D[q]f [q], (3.5)

where b[q] (f [q]) is a vector of length (M2 +1)(2N +1)Nq that contains all the scattered

(incident) wave amplitudes contained in b
(p)
n (f

(p)
n ), for −N ⩽ n ⩽ N and 1 ⩽ p ⩽ Nq.

The square matrix D[q] has size (M2 + 1)(2N + 1)Nq and is the DTM of slab q.
We seek the reflected and transmitted amplitude functions in the form

A−
m,q−1(χ) =

M2∑
l=0

∫
Γl

R+
m,l;q(χ : τ)A+

l;q−1(τ) dτ (3.6a)

and

A+
m,q(χ) =

M2∑
l=0

∫
Γl

T +
m,l;q(χ : τ)A+

l;q−1(τ) dτ, (3.6b)

respectively. The functions R+
m,l;q(χ : τ) and T +

m,l;q(χ : τ) are respectively reflection and
transmission kernels for each pair of vertical modes m and l.
In order to evaluate the reflection and transmission kernels, we re-express the scattered

wave field (2.8a) due to each floe in the slab as a superposition of plane waves. This
is achieved using the following plane wave representation of the outgoing cylindrical
harmonics

Hn(kmr) e inθ =


(− i)n

π

∫
Γm

e inχ e ikm(x cosχ+y sinχ) dχ, (x ⩾ 0)

in

π

∫
Γm

e− inχ e ikm(−x cosχ+y sinχ) dχ, (x ⩽ 0),
(3.7)

where (x, y) = (r cos θ, r sin θ). This identity is derived from Sommerfeld’s integral rep-
resentation of the Hankel function (Sommerfeld 1949) for m = 0, while an integral
representation of the modified Bessel functions of the second kind Kn has been used for
m ⩾ 1 (see Linton & Evans 1992, equation 2.12). To the authors’ knowledge, the two
cases have not been unified in this manner before. Substituting (3.7) into (2.8a) for all
floes and modes simultaneously, and using (3.5) and (3.4) in turn, we obtain the follow-
ing semi-analytical expressions for the reflection and transmission kernels after algebraic
manipulations

R+
m,l;q(χ : τ) =

(
vS−
m;q(χ)

)tr
PD[q]P−1vIn+

l;q (τ) (3.8a)

and

T +
m,l;q(χ : τ) =

(
vS+
m;q(χ)

)tr
PD[q]P−1vIn+

l;q (τ) + e ikmLq cosχδ(χ− τ), (3.8b)
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where a superscript tr indicates transpose and δ( . ) denotes the Dirac delta.
In these expressions we have defined the vector vIn+

l;q−1(τ) of length Nq(2N+1)(M2+1),
which provides a change from Cartesian to polar coordinates of the forcing field in the
local system of each floe in the slab. Its entries are[

vIn+
m;q(τ)

]
ind(l,p,n)

= in e− inτ e ikl((xp−ξq−1) cos τ+yp sin τ)δml, (3.9a)

where ind(l, p, n) = lNq(2N+1)+(p−1)(2N+1)+N+n+1 defines the modal hierarchy
(vertical mode, floe number, angular mode) in ordering entries, and δml is the Kronecker
delta. In contrast, the vectors vS−

m;q−1(χ) and vS+
m;q(χ) provide a change from polar to

Cartesian coordinates of the scattered field due to each floe, travelling in the leftward
and rightward direction, respectively. Their entries are[

vS−
m;q(χ)

]
ind(l,p,n)

=
in

π
e− inχ e ikl((xp−ξq−1) cosχ−yp sinχ)δml (3.9b)

and [
vS+
m;q(χ)

]
ind(l,p,n)

=
(− i)n

π
e inχ e− ikl((xp−ξq) cosχ+yp sinχ)δml. (3.9c)

The matrix P is a permutation matrix of size Nq(2N + 1)(M2 + 1) used to change the
modal hierarchy from that used in the slab DTM D[q] (i.e. floe number, angular mode,
vertical mode) to that used in (3.9). Also note that the second term in (3.8b) represents
the contribution from the forcing field to the transmitted field.

3.2. Multiple slabs

At the boundary x = ξq, the left- and right-travelling amplitude functions take the form

A−
m,q(χ) =

M2∑
l=0

∫
Γl

(
R+

m,l;q+1(χ : τ)A+
l;q(τ) + T −

m,l;q+1(χ : τ)A−
l;q+1(τ)

)
dτ (3.10a)

and

A+
m,q(χ) =

M2∑
l=0

∫
Γl

(
T +
m,l;q(χ : τ)A+

l;q−1(τ) +R−
m,l;q(χ : τ)A−

l;q(τ)
)
dτ, (3.10b)

where the kernel functionsR±
m,l;q and T ±

m,l;q are found using the method described in §3.1.
Given that the forcing is provided by (2.4) only, we have A+

0;0(χ) = AIn(χ), A+
0;m(χ) = 0

for 1 ⩽ m ⩽ M and A−
S;m(χ) = 0 for 0 ⩽ m ⩽ M2.

A numerical scheme is implemented by discretizing the amplitude and kernel functions
using a uniform sampling of the angular parameters χ and τ . Amplitudes and kernels
associated with a travelling vertical mode (m = 0) are defined on the truncated contour

Γ̃0 introduced at the beginning of § 3 (see the right-hand panel of figure 2). Contour Γ̃0 is
then discretized by selecting 2Ntr + 1 samples χi, −Ntr ⩽ i ⩽ Ntr. Different resolutions
are taken for the sub-interval [−π/2, π/2] of Γ̃0 and its complex branches. Typically the
resolution chosen for the complex branches is 5 times as coarse as that of [−π/2, π/2].

Likewise, contour Γ̃e is discretized using 2Nev + 1 samples.
Combining all the vertical modes, we can define vector versions of the amplitude func-

tions A±
q containing the value of the corresponding continuous functions A±

m,q(χi) at
all angular samples χi. Likewise, we obtain matrix versions of the kernel functions after
discretization. At this point, a numerical quadrature must be chosen to approximate the
integrals involved in (3.10). Although high order schemes, e.g. Simpson’s rule or Gaussian
quadrature, are very accurate for relatively smooth functions, we expect our spectra to
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be noisy for large random arrays of floes (confirmed by numerical experiments), in which
case lower order quadratures provide more accurate and more efficient estimates. We
found that a composite trapezoidal rule gave the best results in terms of convergence.
The weighting factors of the trapezoidal rule can be assembled in a diagonal matrix of
size Nang = 2Ntr + 1 +M(2Nev + 1), which multiplies the matrix versions of the kernel
functions to give the reflection and transmission matrices R±

q and T±
q . Consequently,

(3.10) is written in the discretized form

A−
q = R+

q+1A
+
q + T−

q+1A
−
q+1 and A+

q = T+
q A

+
q−1 +R−

q A
−
q . (3.11)

The solution to the slab interaction problem is obtained using an efficient iterative
technique, which is an extension to the one described by Montiel et al. (2015a) for trav-
elling modes only. Following this approach, at each slab boundary x = ξq, the unknown
amplitude vectors are given by

A+
q =

(
I−R−

1,qR
+
q+1,M

)−1

T+
1,qA

+
0 (3.12a)

and

A−
q =

(
I−R+

q+1,MR−
1,q

)−1

R+
q+1,MT+

1,qA
+
0 , (3.12b)

where I denotes the identity matrix of order Nang, and R±
p,q and T±

p,q are the reflection
and transmission matrices, respectively, for the stack of slabs p to q. These reflection
and transmission matrices are computed iteratively, starting from slab 1 alone, which
initializes the procedure, to the stack of slabs 1 to S, adding one slab to the stack at each
iteration.
We establish a convergence criterion for the numerical integration scheme considered

here, based on the energy conservation relation∫ π/2

−π/2

∣∣AR(χ)
∣∣2 dχ+

∫ π/2

−π/2

∣∣AT(χ)
∣∣2 dχ =

∫ π/2

−π/2

∣∣AIn(χ)
∣∣2 dχ (3.13)

being satisfied within a tolerance of 10−4, where the reflected and transmitted amplitude
functions are given by AR(χ) = A−

0;0(χ) and AT(χ) = A+
0;S(χ), respectively, for −π/2 ⩽

χ ⩽ π/2. Note that we have restricted the integration domain to include travelling
wave components only, as they are the only ones to affect the energy balance of the
system. We refer to the restriction of the amplitude functions A±

0;q(χ), q = 0, . . . , S, to

−π/2 ⩽ χ ⩽ π/2 as directional spectra. In particular, AR(χ) and AT(χ) are the reflected
and transmitted directional spectra, respectively.
We further note that although the energy conservation relation (3.13) is necessary for

convergence of our numerical method, it is not sufficient to obtain convergence to the
desired solution. In particular, we can always obtain energy conservation for sufficiently
high Nang, regardless of the value taken for the truncation parameter γ and the resolution
of the complex branches in our numerical approximation of the integration contours
Γ̃e and Γ̃0. Convergence of the solution within the desired tolerance is obtained for a
sufficiently large γ, as will be shown in § 4.

4. Far-field approximations

The far-field approximations neglect evanescent/decaying wave components in wave
interactions between floes. The first far-field approximation (FFA1) we consider consists
of neglecting the vertical evanescent modes (i.e. setting M2 = 0) to calculate wave inter-
actions between floes in the slabs. To the authors knowledge, the convergence properties
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T = 6 s T = 9 s T = 12 s

M2 σ = 1.05 σ = 1.5 σ = 1.05 σ = 1.5 σ = 1.05 σ = 1.5

0 0.86332 0.92510 0.71195 0.49577 0.10933 0.14183

3 0.86345 — 0.71154 — 0.10936 —

6 0.86365 — 0.71126 — — —

9 0.86371 — 0.71124 — — —

12 — — — — — —

Table 1. Convergence of the reflection coefficient with respect to the number of vertical modes
M2 for three wave periods (T = 6, 9 and 12 s) and two grating spacings (σ = 1.05 and 1.5). A
long dash — signifies a value identical to the one directly above.

of the self-consistent approach for wave interactions between floes with respect to the
number of vertical modes used has not been investigated previously. In comparison, the
convergence properties of the EMM for a single floe with respect to the vertical modes
are well understood (see, e.g., Montiel 2012).
Consider a large array of 20 slabs, each containing 51 identical floes with radius

a = 150m and thickness D = 1.5m. The relatively large floes in this array test the
convergence properties of the method to a greater extent than the range of floe radii
in the natural FSDs used in the simulations presented in § 6. The floes are assumed to
be equally spaced and aligned in both the x- and y-directions, forming a regular square
grating symmetric about the x-axis. We define the non-dimensional spacing of the grat-
ing as the ratio of the centre-to-centre distance between two adjacent floes and the floe
diameter. It is denoted by σ and equals L/2a ⩾ 1, where L = L1 = . . . = Lq is the
width of the slabs. We prescribe the incident directional spectrum AIn(τ) = cos τ , the
wave period T = 2π/ω and set the fluid depth to h = 200m. We define the reflection
coefficient of the array to be

R =

√√√√(∫ π/2

−π/2

|AR(χ)|2 dχ

)/(∫ π/2

−π/2

|AIn(χ)|2 dχ

)
. (4.1)

It is used to analyse the convergence with respect to the vertical modes.
Table 1 shows values (to five significant digits) of the reflection coefficient for the three

wave periods T = 6, 9 and 12 s, and two spacings σ = 1.05 (dense array) and 1.5 (loose
array). It indicates that floe spacing is the dominant influence on the rate of convergence
with respect to the number of vertical modes used. For the loose array (large spacing),
all evanescent waves decay rapidly and do not interact with adjacent floes for all wave
periods considered, as the reflection coefficient is accurate to five digits with the FFA1
(M2 = 0). For the dense array, M2 = 9 evanescent modes are required to reach five-
digit accuracy for the two shorter wave periods, T = 6 and 9 s, while only M2 = 3
evanescent modes are needed for longer waves (T = 12 s). Shorter waves are expected
to experience more scattering and therefore to generate more intense evanescent modes
than longer waves, which is consistent with our observations. Also note that the FFA1
provides three-digit accuracy for all wave periods in the dense array case, which is the
level of accuracy sought as part of this investigation. It is thus reasonable to consider the
FFA1 valid for at least T ⩾ 6 s for the array considered here or ka ⩽ 16 more generally.
Consequently, the FFA1 will be invoked for the remainder of this paper.
In § 3 the integral expressions for the wave fields at the slab boundaries were approx-
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Figure 3. Estimated error on values of the reflection coefficient against the truncation parameter
γ. The convergence analysis is conducted for (a) T = 6 s, (b) 9 s and (c) 12 s, and two grating
spacings.

imated by discretizing the parameterized contours Γ0 and Γe. Specifically, the complex
branches were truncated to ±(π/2 − γ i) for Γ0 and ±γ i for Γe. The value taken for
the truncation parameter γ determines the proportion of x-decaying wave components
taken into account for a slab. These decaying waves do not affect the far-field solution
(|x| → ∞) of the single slab problem. Therefore, a second far-field approximation (FFA2)
is proposed, in which the x-decaying wave components are neglected in the interactions
between slabs, i.e. we set γ = 0. We investigate the validity of FFA2 below which, to the
authors’ knowledge, has not been been conducted before.
We consider the same 20-slab arrays as in the previous analysis. The problem is solved

for increasing values of γ with 0 ⩽ γ ⩽ 2.5. The accuracy of the solution is estimated
by the absolute error between successively calculated values of the reflection coefficients.
These are plotted in figure 3 for wave periods T = 6, 9 and 12 s, and grating spacings
σ = 1.05 and 1.5. Although the error curves are all noisy, we detect clear convergence
trends. Error estimates all reach machine precision within the interval 0 ⩽ γ ⩽ 2.5 but
the convergence rate depends strongly on both wave period and spacing. In particular,
faster convergence is observed at shorter wave periods for a given spacing, while the
denser array tends to slow the convergence for each period. In all cases considered here,
a 10−5 error (four-digit accuracy) is reached with γ ≈ 1.2. Therefore, we will use this
value for the remainder of our investigation, i.e. we do not employ FFA2.

5. Simulations and randomness

5.1. Random sea states

We model the forcing wave field as a random directional sea state, in which wave com-
ponents travelling at different angles do not interfere coherently, i.e. with their phases
being uncorrelated. Numerical tests (not shown here) indicate that the reflection prop-
erties of an array of floes depends strongly on the directional coherence of the forcing
field. Specifically, the reflection coefficient (and therefore the attenuation rate of wave
energy) computed for a coherent forcing field is typically higher than that obtained for an
incoherent field with the same prescribed amplitude function. In addition to incoherence,
we require the simulated directional sea state to be ergodic in the sense that the wave
statistics over the spatial domain are uniform and can be deduced from its properties
at a single point in the domain. This property is needed to reduce the variability of the
response of the system to a random forcing, as will be discussed below.
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A number of methods exist to simulate deterministically ergodic directional sea states
(see, e.g., Jefferys 1987; Miles & Funke 1989). Most methods are based on multiple
frequency wave spectra, for which a realization of the random sea state is generated
by a double sum over the directional and frequency range of plane waves with random
characteristics. As we assume a monochromatic wave forcing, the double sum is replaced
by a single sum over Ntr directions, giving a free surface displacement

ηIn(x, y, t) =

Ntr∑
i=1

ai cos(k0(x cos τi + y sin τi)− ωt+ εi). (5.1)

For each wave component travelling at angle τi with respect to the x-axis, the amplitude
ai is defined deterministically from an energy spreading function D(τ) and the phase εi
is a random parameter with uniform distribution between 0 and 2π. For the remainder
of the investigation we prescribe a standard cosine-squared energy spreading function,
i.e.

D(τ) =
2

π
cos2(τ) (−π/2 ⩽ τ ⩽ π/2), (5.2)

where the constant factor was chosen so the total energy of the wave field is∫ π/2

−π/2

D(τ) dτ = 1.

The energy spreading function (5.2) and the amplitudes of (5.1) are related by ai =√
2D(τi)∆τ for 1 ⩽ i ⩽ Ntr in (5.1), with ∆τ = π/(Ntr − 1) and τi = (i− 1)∆τ − π/2.
Although directional incoherence is directly satisfied in (5.1) through the random pa-

rameter εi, following Jefferys (1987) we show in Appendix A that this equation does
not simulate an ergodic field, i.e. much spatial variability exists in the mean energy of a
generated sea state (≈ 100% relative standard error). A simple remedy is to perform av-
eraging over an ensemble of random realizations of the wave field. The method converges
slowly, however, and approximately 10000 realizations of the sea state are necessary to
approximate ergodicity with 1% relative standard error on the incident field mean energy.
We compute the corresponding reflected energy, R2, for the 20-slab grating considered

in §4, with spacing constant σ = 1.5. The forcing is defined by the random sea state (5.1)
with period T = 9 s and an energy spreading function given by (5.2). Using an ensemble
of 1000 realizations of the random forcing field, we calculated the relative standard error
on a single estimate of the reflected energy to be approximately 7%. Averaging over many
realizations of the random wave forcing, the relative error of the average estimate then
drops as the inverse square root of the number of realisations, so it is approximately 1%
for 50 realizations. This contrasts with the 10000 simulations required to estimate the
incident field mean energy with the same tolerance. Similar results were obtained for
other wave periods. This analysis suggest that the scattering properties of large arrays
have a low sensitivity to random variations in the phase of the wave forcing. For a regular
array of ice floes, a relatively small number of random realizations of the sea state then
suffice to obtain accurate estimates of the scattering properties of large arrays.

5.2. Simulation of a natural floe size distribution

We model the MIZ as a randomly selected array of floes with different sizes, such that
the diameters obey a power law distribution, which is a standard empirical model of the
FSD (see, e.g., Rothrock & Thorndike 1984; Toyota et al. 2006, 2011). This is a unique
feature of our three-dimensional attenuation model. Further, it allows us to simulate a
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MIZ with a high concentration, which would otherwise not be possible with a single floe
size, e.g. the mean floe size.
We use an approach similar to that of Dumont et al. (2011) and Williams et al. (2013a)

to parameterize the FSD, in which a bounded power law distribution is used. We define
the probability density function (a/amin)

−κ
for amin ⩽ a ⩽ amax, where κ is a constant

parameter. Therefore, the probability that a floe has a radius a < a is then given by

P(a < a) =
a1−κ − a1−κ

min

a1−κ
max − a1−κ

min

. (5.3)

The distribution is then discretized so that a small finite number, Nb say, of unique floe
sizes are considered.
An algorithm is described in Appendix B to generate a distribution of ice floes in a

slab using the bounded power-law FSD described here. As the MIZ generated in our
model is obtained by stacking together a large number of slabs, the same FSD is satisfied
for the whole MIZ. Parameters of the algorithm are the dimensions of the ice-covered
region in the slab, i.e. the width Lx and breadth Ly, the number of bins Nb, the ice
concentration c, the minimum and maximum floe radii amin and amax, and the exponent
in the power law distribution κ. An example of a random array generated using this
algorithm is shown in figure 4(a) for parameter values Lx = 220m, Ly = 8Lx, Nb = 11,
c = 0.7, amin = 10m and amax = 100m and κ = 1.84. The last three parameters were
the same as used by Williams et al. (2013a). This range of floe sizes is comparable to
floe sizes typically observed in real MIZs (see, e.g., Toyota et al. 2006).
To generate a highly concentrated MIZ, our algorithm populates each slab with a

large number of small floes. The effect of these small floes on wave interactions is likely
to be negligible, however, while it increases the computational cost of the self-consistent
method used to calculate the multiple scattering within each slab. Accordingly, we devise
below a numerical test to determine the minimum floe size amin contributing to scattering
by a large array.
Consider a randomly selected array in a single slab parameterized as before, but with

larger breadth Ly = 51Lx. The array generated contains 488 floes. We compute ensemble
averages of the reflection coefficient R due to random realizations of the incident sea
state with an energy spreading function given by (5.2). The calculations are repeated
after removing all the floes with the smallest floe size successively until amin = amax, in
which case the concentration is approximately 5%.
Figure 4 shows ensemble averages of the reflection coefficient against the minimum floe

radius amin, for wave periods T = 6 and 9 s (solid lines with circle and square markers,
respectively). Each data point is calculated as the average of 100 simulations, each of
which is characterized by a random realization of the array and the incident sea state.
For small amin, the reflection coefficient remains roughly constant for both wave periods
considered, suggesting very small floes do not influence the scattering properties of the
slab. A change of regime occurs for amin ≈ 28m at T = 6 s and amin ≈ 55m at T = 9 s,
beyond which the reflection coefficient decreases as amin increases, so that the smallest
floes start to contribute to scattering by the slab. These values of amin are used to define
the critical minimum floe size Dcrit = 2amin, corresponding to the change of regime
described above.
Our estimates of the critical minimum floe size, Dcrit ≈ 56 and 110m, are similar to the

corresponding open water wavelengths, λ0 = 2π/k0 ≈ 56 and 126m, for T = 6 and 9 s,
respectively. This suggests that scattering by floes smaller than the forcing wavelength
is negligible and that these floes need not be included in the FSD.
We repeat the analysis for arrays composed of 10 slabs. To reduce the computing
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Figure 4. (a) Example of array generated using the random array generator described in ap-
pendix B. (b) Ensemble averages of reflection coefficients plotted against the minimum floe
radius of the power-law FSD used to generate random realizations of the arrays. Results are
given for single and 10-slab arrays (solid and dashed lines, respectively) and wave periods T = 6
and 9 s (circle and square markers, respectively). The wave forcing is a random sea state with
normalized cosine square energy spreading.

time, we solve the single slab problem for 50 random realizations of the array and then
perform random permutations of the pool of single slab arrays to generate random 10-
slab arrays (the validity of this approach will be discussed in § 5.3). Ensemble averages of
the reflection coefficient for varying amin are plotted in figure 4 for T = 6 and 9 s (dashed
lines with circle and square markers, respectively). We observe a two-regime dependence
on amin, similar to the single slab array, with Dcrit taking the same value for both wave
periods, noting that the transition between each regime is much smoother for T = 6 s.
We deduce that the critical minimum floe size does not depend on the size of the array
but seems to be an intrinsic property of the FSD, varying with wave period and possibly
ice thickness (not studied here).

5.3. Averaging

The multiple-slab interaction technique described in § 3.2 performs efficiently as the com-
putational cost depends linearly on the number of slabs. Computing the reflection and
transmission matrices of each slab is more time-consuming, however, as a 2D multiple
scattering problem, which is O

(
N3

q

)
expensive, needs to be solved for each slab q con-

taining Nq floes. To reduce the number of single-slab solutions to compute, we calculate
the reflection and transmission matrices of a fixed number Su of unique slabs and store
them, requiring O

(
SuN

2
ang

)
memory space. Each realization of a multiple-slab array is

then generated from random permutations (allowing repetitions) of the Su unique slabs.
Bennetts (2011) used this method in a related acoustic problem, where each slab was
composed of an infinite regular array of scatterers with different in-row spacings, and
found that Su = 50 was sufficient to take ensemble averages of wave transmission by
100-slab arrays. In our case, the slabs contain only a finite number of scatterers and the
scatterers are of different sizes and not positioned in a regular manner. Therefore, it is
unclear whether a value of Su similar to that of Bennetts (2011) will be appropriate.
We devise a numerical test to determine a suitable value of Su. Consider a 100-slab

array with slab dimensions Lx = 220m and Ly = 51Lx, and an FSD in each slab
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Figure 5. Ensemble average of the reflection coefficient by a 100-slab array computed for
different values of Su. The array in each unique slab is generated using the FSD described in
§ 5.2 with dimensions Lx = 220m and Ly = 51Lx. Results are shown for (a) T = 6 s and
(b) T = 9 s. Averages are computed from 50 random realizations of the array and wave forcing
(with a cosine square spread).

parameterized as in § 5.2. We compute the reflection coefficient of the array for different
values Su at wave periods T = 6 and 9 s with amin = 37 and 55m, respectively (using our
findings from § 5.2). For each value of Su considered, a single sample of Su unique slabs
is generated to perform random permutations, and independent samples are used for
different values of Su. Each computed value of the reflection coefficient is the mean of an
ensemble of 50 realizations of the array, where each realization is obtained by randomly
permuting unique slabs from the same sample of slabs generated. The results of these
computations are shown in figure 5, where error bars indicate the standard error of the
mean.

We observe a remarkable consistency in the computed values of the reflection coef-
ficient, with two significant digit accuracy being obtained even for a small number of
unique slabs, i.e. Su = 10 and 2 for T = 6 and 9 s, respectively. Specifically, the standard
error of the mean values of R for Su ⩾ 10 and 2 (for T = 6 and 9 s, respectively) is
< 0.1%. Note that each point is computed using an independent set of unique slabs, so
that points obtained with different values of Su are uncorrelated. This suggests a small
value of Su is sufficient to simulate scattering by large random arrays of floes. In particu-
lar the heterogeneity introduced in each unique slab (random floe packing) translates to
larger scales when the slabs are stacked together. We fix Su = 10 for the remainder of the
investigation, so that the memory space required to store the reflection and transmission
matrices is O

(
N2

ang

)
.

We also find the procedure is very accurate, as each estimate of the reflection coefficient
(i.e. for a single random realization of the array and wave forcing) has a relative standard
error of the mean of approximately 2.5 and 1% for T = 6 and 9 s, respectively. So,
after averaging over 50 random realizations, the error drops to approximately 0.35 and
0.15% (respectively). We account for some variability in the values of R for Su ⩾ 10, by
reducing the ensemble size used to average. Specifically, we use an ensemble of 10 random
realizations which gives a relative standard error below 1% for both wave periods.
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6. Attenuation and directional spreading

We describe wave energy attenuation and directional spreading through the MIZ by
considering the evolution of the forward propagating directional wave field. Backward
propagating wave components are not analysed here because their dependence on the
finite extent of the simulated MIZ distorts the rate of energy decay — the larger the array
the more backscattered wave energy exists across the array, until full reflection, R = 1,
is achieved. However, these backward travelling components affect the attenuation and
directional spreading of the forward propagating components. In particular, the limited
extent of the MIZ in the x-direction minimises backward components near the end of the
array, which in turn accelerates the attenuation rate of forward wave energy (discussed
subsequently).
At each slab boundary x = ξq, q = 0, . . . , S, the wave energy of the forward propagating

components is defined by

E+(xq) =

∫ π/2

−π/2

S+
q (χ) dχ, where S+

q (χ) =
∣∣A+

0,q(χ)
∣∣2

is a directional energy density function. Note that S+
q (χ) characterises the directional

energy density of the forward propagating components on the line x = ξq, as opposed to
at the point (x, y) = (ξq, 0).
The method to extract wave energy attenuation and directional spreading is demon-

strated on a case study parameterized to represent a realistic MIZ, as described in § 5.2.
Consider an array of ice floes composed of S = 220 slabs formed by random permu-
tations of Su = 10 unique slabs. Each unique slab is parameterized with Lx = 220m,
Ly = 220 × Lx, c = 0.7, Nb = 19, D = 1.5m (for all floes), amin = 10m, amax = 100m
and κ = 1.84, so the extent of the simulated MIZ is approximately 50 km×50 km. For all
wave periods, we then remove from the array the floes with a radius smaller than 35m,
which have negligible effects on the evolution of wave properties. The forcing is given by
a normalised cosine-squared directional sea state, as described in § 5.1. We consider the
range of wave periods T = 6 to 15 s.
We implement an averaging procedure over 10 random realizations of the array and

wave forcing. For each realization: (i) we generate independent random copies of the
random array and the directional sea state; (ii) we compute S+

q (χ) for q = 0, . . . , S; and
(iii) we calculate the wave energy E+(xq) and directional spread σ1(ξq) (defined later)
for q = 0, . . . , S. The average of E+(xq) and σ1(ξq) for each ξq is then obtained from the
arithmetic mean over the 10 random realizations. We note that this averaging procedure
differs significantly from that of Kohout & Meylan (2008) and Bennetts et al. (2010), in
which averages of the transmitted energy for increasingly long MIZs are used to analyse
wave energy attenuation.
Figure 6(a) shows the average wave energy profile E+(x) across the simulated MIZ

for T = 6, 9 and 12 s. We observe a clear exponential decay of wave energy for T = 9
and 12 s. For T = 6 s, the wave energy profile is more complicated with three observable
regimes: (i) a rapid quasi-exponential attenuation for x < 10 km; (ii) a slower quasi-
exponential attenuation for 10 km < x < 40 km; and (iii) an acceleration of the decay
for x > 40 km. Numerical simulations (not displayed here) showed that the transition
between the first and second regimes arises because of the limited extent of the array in
the y-direction. Specifically, the two regimes merge into a single attenuation regime as
Ly increases, with an attenuation rate between that of the first and second regime. This
situation is difficult to achieve, however, as it is positively correlated to the extent of the
MIZ in the x-direction. The acceleration of the wave energy attenuation for x > 40 km is
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Figure 6. (a) Ensemble average of the forward propagating wave energy E+ and (b) the di-
rectional spread σ1 through ≈ 50 km of simulated MIZ, for T = 6, 9 and 12 s. In panel (b)
the dashed line corresponds to the theoretical value of σ1 characterizing an isotropic directional
wave field. This value is independent of wave period.

observed for the three wave periods considered here, although the effect becomes weaker
as the wave period increases. As discuused earlier, the existence of this regime may be
explained by the lack of backscattered waves near the end of the array, which in turn
reduces the forward propagating wave energy (due to reflection from these backscattered
components in this region).
To quantify the spreading experienced by the wave field through the MIZ, we use the

so-called directional spread

σ1(ξq) =
√
2 (1− r1(ξq)) (q = 0, . . . , S), (6.1)

where

r1(ξq) =

(∫ π/2

−π/2

cos(χ)S̃+
q (χ) dχ

)2

+

(∫ π/2

−π/2

sin(χ)S̃+
q (χ) dχ

)2
1/2

, (6.2)

with S̃+
q (χ) = S+

q (χ)/E+(ξq) the normalised forward energy density at x = ξq.
Our definition for σ1 is the forward-only spectrum version of the standard definition,

in which the integrals in (6.2) range from −π to π to account for the full directional
range (see Krogstad 2005, Equation 2.16). The original definition of σ1 is the standard
deviation of a random variable with periodic probability density function, in this case the
energy spreading function D(τ) defined in (5.2). For forward propagating waves, D(τ) is
then simply replaced by S̃+

q (χ).
The directional spread is plotted in figure 6(b) across the simulated MIZ, for T = 6, 9

and 12 s. We observe a jump in σ for T = 6 and 9 s as the cosine squared directional wave
field enters the MIZ, indicating a positive correlation between the amount of scattering
and directional spreading. After the initial jump, the directional spread increases linearly
with x for these two wave periods. For T = 12 s, σ1 increases at a linear rate from the
start of the array. To the authors’ knowledge, the constant rate of directional spreading
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Figure 7. Ensemble average of normalised forward energy density function S̃+
q (χ) for T = 6 s

(left panels) and 9 s (right panels). The energy densities are plotted for (a, b) q = 45 (i.e.
x ≈ 10 km), (c, d) q = 89 (i.e. x ≈ 20 km), (e, f) q = 133 (i.e. x ≈ 30 km), (g, h) q = 177 (i.e.
x ≈ 40 km), and (i, j) q = 221 (i.e. x ≈ 50 km).

(according to the σ1 measure) within the random array has not been previously observed
or simulated.
The theoretical value of σ1 for an isotropic field is denoted by σ

(iso)
1 . It is calculated by

setting S̃+
q (χ) = 1/π in (6.2) (so it integrates to 1), which gives σ

(iso)
1 =

√
2(1− 2/π) ≈

0.8525. This value is indicated by a dashed horizontal line in figure 6(b). It is seen that,
for T = 6 and 9 s, σ increases beyond that line suggesting the directional spectrum
becomes distorted after reaching its isotropic state. To interpret the behaviour of these
curves, we analyse the directional spectrum at different locations in the array.
Figure 7 shows the normalised forward energy density S̃+

q (χ) for q = 45, 89, 133, 177
and 221, corresponding to x ≈ 10, 20, 30, 40 and 50 km, respectively. The left- and right-
hand columns show the evolution of the energy density (running from the top panel
to the bottom one) through the array for T = 6 and 9 s, respectively. The curves are
generated by averaging over the 10 realizations of the array and smoothing (using a
moving average). We observe a gradual spreading of the densities towards isotropy for
both wave periods, as the most energetic incident wave components (at the small- to mid-
range angles |2χ/π| ⪅ 0.8) attenuate while the lower energy components (at large angle)
grow slightly. After reaching a quasi-isotropic state, wave energy at the mid-range angles
keep decreasing, while large angle components keep growing, which explains the values

of σ1 larger than σ
(iso)
1 in figure 6(b). Numerical tests (not displayed here) have shown

that this behaviour originates from the limited extent of the array in the x-direction;
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Figure 8. Wave energy attenuation coefficient a as a function of wave period T in the range
6–15 s. Error bars represent the standard error of each estimated value of a, and account for the
goodness of the least-square fit and the variability in the ensemble of simulations.

extending the array in the x-direction, we observe the same linear growth of σ1 until

σ
(iso)
1 is reached, at which point the directional spread remains quasi-constant before it

begins to grow again near the end of the array. We conjecture that the acceleration of the
energy decay near the end of the array, as observed in figure 6(a), affects the mid-range
angles more than the large angle components, resulting in the distorted energy densities
seen in figure 7(i, j).

6.1. Attenuation coefficient

The key quantity of existing wave attenuation models in the MIZ is the attenuation
coefficient, which defines the rate of exponential attenuation of wave energy in an ice-
covered sea. At present, this is the only quantity used to parameterize wave–sea ice
interactions in large scale IOMs (e.g. Williams et al. 2013a,b using the scattering/viscous
model of Bennetts & Squire 2012b) and SWMs (Rogers & Orzech 2013 using the viscous
models of Liu et al. 1991a and Wang & Shen 2010).
To extract the attenuation coefficient from our simulations, we fit an exponential curve

to the computed data E+(ξq), q = 0, . . . , 220, i.e.

E+(x) ≈ E+(0) e−ax, (6.3)

where a is the attenuation coefficient of wave energy and E+(0) = exp(aξ0). We then use
linear least-square regression to estimate the expected value a(T ) for each wave period
T (with the overbar denoting the expected value of a random variable). Our approach is
similar to experimental measurements, in which the attenuation coefficient is extracted
from the actual wave energy profile through a realization of the MIZ.
For each estimated a value, we compute the standard error that accounts for the

goodness of the least-square fit and the variability of the ensemble averaging process. The
statistical method used to estimate the standard error is based on the random effects
model and the maximum likelihood method. It is described by Brockwell & Gordon
(2001) in the context of medical science.
Figure 8 shows the attenuation coefficient as a function of wave period, in the range T =

6 to 15 s. Note that the order of magnitude of a is O(10−6–10−5), which is slightly lower
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than attenuation coefficients estimated from field observations (see, e.g., Wadhams et al.
1988; Meylan et al. 2014, observing that our simulations have not been parameterized to
match these data sets in regard to the physical moduli involved). This is not surprising as
scattering is the only physical process considered here, while in Nature other dissipative
processes would contribute to the decay of wave energy in the MIZ. The relatively wide
incident directional spectrum used for the simulations (i.e. the cosine-squared spreading
function) may also contribute to these low values of the attenuation coefficients.
Qualitatively, the dependence of the attenuation coefficient on wave period is as ex-

pected, as a decreases for increasing T . As the wave period becomes smaller, the atten-
uation coefficient seems to level off. Interestingly, this feature looks similar to the onset
of the rollover effect observed in several data sets reported by Wadhams et al. (1988).
We do not claim, however, that our model is capable of reproducing this effect, which
was hypothesized to be a consequence of local wind wave generation, non-linear wave–
wave interactions or dissipative processes, none of which are considered in our model. An
extensive sensitivity analysis would be required to interpret this feature in our model,
which is beyond the scope of the present case study. We also observe the increase of the
attenuation coefficient for T = 15 s, which is likely due to relatively large variability of
the attenuation coefficient between individual simulations when the attenuation rate is
very small. Note, however, that a similar effect has been reported by Wadhams et al.
(1988) in their field data, although those authors did not comment on this feature.

6.2. Rate of spreading and distance to isotropy

As observed in figures 6(b) and 7, our model is capable of reproducing the directional
spreading experienced by the wave field as it travels through the MIZ. We utilise the
apparent linear relationship between σ1 and x observed in figure 6(b) to quantify the
directional spreading, by fitting a linear curve to the subset of computed data σ1(ξq),
q = qmin, . . . , qmax. Thus

σ1(x) ≈ σ0
1 + sx, (6.4)

where s is the (constant) rate of directional spreading, σ0
1 = σ1(0) and the the lower and

upper bounds, qmin and qmax, are determined manually for each T . A linear least-square
regression is used to estimate s(T ), as for the attenuation coefficient. The standard errors
are also calculated using the statistical method mentioned in § 6.1.
The mean rate of directional spreading, s, is plotted as a function of wave period in

figure 9(a). For T ⩽ 10 s, the rate of spreading only depends weakly on the wave period,
with s = 5–6 × 10−6 m−1. The minimum observed at T = 8 s and the maximum at
T = 10 s are difficult to interpret physically, although random variability may be a factor
as there are relatively large error bars in this regime. For longer wave periods (T ⩾ 10 s),
s decreases monotonically for increasing wave period, which is sensible as directional
spreading is caused by scattering, which diminishes for increasingly long waves.
We now use the more tangible quantity of the distance to isotropy, denoted x(iso), to

describe the spreading. We stated earlier that the wave field becomes isotropic when

σ1 = σ
(iso)
1 ≈ 0.8525, so using (6.4) we can infer the distance from the ice edge to reach

isotropy to be

x(iso) =
σ
(iso)
1 − σ0

1

s
. (6.5)

Care must be taken in estimating x(iso) and its variance for each simulation, as σ0
1

and s are random variables with an underlying probability distribution, for which we
have calculated the expected values and covariance matrix. Equation (6.5) is actually
the first order approximation of the expected value of the ratio distribution. A (better)
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Figure 9. (a) Rate of directional spreading s as a function of wave period T in the range

6–15 s. (b) Distance to isotropy x(iso) plotted over the same range of wave periods. Error bars
are computed as in figure 8.

second-order formula for estimating the expected value of the distance to isotropy is
given by

x(iso) ≈ σ
(iso)
1 − σ0

1

s
−

Cov
(
σ0
1 , s
)

s2
+

Var (s)
(
σ
(iso)
1 − σ0

1

)
s3

, (6.6)

where Var and Cov denote the variance and covariance of random variables, respectively
(see, e.g., Stuart & Ord 1999). A first-order formula can also be derived for the variance
of x(iso), i.e.

Var
(
x(iso)

)
≈

(
σ
(iso)
1 − σ0

1

s

)2
 Var (s)(

σ
(iso)
1 − σ0

1

)2 − 2
Cov

(
σ0
1 , s
)(

σ
(iso)
1 − σ0

1

)
s
+

Var
(
σ0
1

)
s2

 . (6.7)

Figure 9(b) depicts the expected value of the distance to isotropy x(iso) against wave
period. The transition between the low-period and high-period regimes is clearly observed
here. Isotropy is reached within the first 40 km of the simulated MIZ for T ⩽ 10 s and

x(iso) varies little with T in this regime. On the other hand, x(iso) increases abruptly for
T ⩾ 11 s, where the wave field spreads very slowly towards isotropy. For T > 12 s, values

of x(iso) greater than 500 km are computed, suggesting that long waves experience next to
no spreading within the extent of a typical MIZ, i.e. over O(10–100) km. The transition
between the two regimes correlates with the prescribed maximum floe diameter of 200m,
which is the open water wavelength of an 11.3 s wave. This finding suggests that waves
longer than the maximum floe size do not experience significant directional spreading in
the MIZ, which agrees with the observations of Wadhams et al. (1986).

7. Conclusion

In this paper we have devised a linear three-dimensional model of ocean wave atten-
uation and directional spreading in the MIZ, governed by conservative scattering effects
alone. The simulated MIZ is composed of a large random array of floating ice floes,
modelled as circular thin elastic plates. A random sea state with prescribed directional
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spreading function defines the wave forcing. The solution to the scattering problem was
obtained using an extended version of the slab-clustering method, recently developed by
the authors in the context of acoustic wave scattering (see Montiel et al. 2015a), which in
this case accounts for evanescent vertical modes generated at each floe edge. This allows
us to (i) solve the deterministic multiple scattering of directional wave spectra by thou-
sands to tens of thousands of floes for a manageable computation cost, (ii) simulate the
propagation of random sea states in randomly generated arrays of ice floes, and (iii) track
the evolution of the wave field directional properties through the array.

Numerical convergence tests were conducted, with the key findings that:

(i) evanescent wave modes have little effect on the multiple scattering solution, even for
k0a as large as O(10), and tightly packed arrays, suggesting the far-field approximation
that neglects these modes is valid for a wide range of parameters; and

(ii) a small proportion of the complex branches of the directional domain accurately
captures wave interactions between slabs.

Ensemble averaging was used to extract the attenuation and directional spreading
properties of realistic random sea states through a random array of ice floes that resembles
a real MIZ. Randomness was included in the wave forcing, as an incoherent and ergodic
directional sea state with a prescribed energy spreading function. Random arrays of ice
floes were produced, with floe sizes drawn from an empirical power-law FSD. An analysis
of these random features and the ensemble averaging process was conducted to identify
potential sources of computational savings. It was shown that

(i) a small number, i.e. O(1), of unique floe sizes only need to be considered in the
FSD, thereby reducing the number of single-floe solutions to compute;

(ii) for each wave period a critical floe size can be defined, such that smaller floes have
negligible effect on the scattering properties of an array, suggesting that the smallest floes
can be removed from the array. The critical floe size was found to be similar to the open
water wavelength. This reduces the number of floes in each slab and, concomitantly, the
computational cost of solving the single-slab problem;

(iii) a small number of unique slabs (less than 10) need only be considered to generate
large multiple slab arrays by taking random permutations of the unique slabs, reducing
the number of single-slab solutions to compute; and

(iv) introducing randomness in the array and the directional forcing reduces the vari-
ability of the solution, so that a small number (e.g. 10) of random realizations of the array
and forcing are required to obtain less than 1% relative standard error on the solution.

The method to extract wave energy attenuation and directional spreading in large
random arrays was presented for a 50 km×50 km simulated MIZ (composed of 220 slabs).
A directional energy density function was defined at each slab boundary to characterize
the directional content of wave energy there. Total wave energy is then obtained by
integrating the density over the directional range, while the directional spread is defined
as the standard deviation of the normalised density interpreted as a probability density
function. The profile of wave energy and directional spread were then plotted for a number
of wave periods and analysed. The key findings of this analysis are summarised below.

(i) Wave energy profiles at mid-range and long wave periods showed clear trends of
exponential decay, which is consistent with field observations. A more complicated three-
regime attenuation profile was observed at the lower end of the range of wave periods,
likely due to the limited extent of the array.
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(ii) The directional spread increases linearly with distance from the ice edge, until it
reaches an isotropic state. For short wave periods, the limited extent of the array causes
the directional spread to take values higher than that for theoretical isotropy near the
end of the simulated MIZ, as the directional energy density becomes distorted.

(iii) Fitting an exponential decay model to the wave energy profile at each wave period,
we estimated the attenuation coefficient of wave energy, which is the most important
quantity parameterizing wave–sea ice interactions in large scale operational models. Our
estimates were found to be slightly smaller than those obtained from field observations,
which is sensible recalling the other mechanisms of wave energy attenuations that are
known to exist in MIZs.

(iv) Fitting a linear growth model to the directional spread profile, we estimated the
rate of directional spreading (slope of linear model) and the distance from the ice edge
to reach isotropy. It was shown that two regimes of spreading exist. For short wave
periods, significant spreading is observed, although the amount of spreading experienced
varies little with wave period. For long wave periods, the degree of directional spreading
diminishes for increasing wave periods. The transition between the two regimes was found
to occur when the wavelength becomes larger than the maximum floe size.
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Appendix A. Ergodicity of random directional sea states

Jefferys (1987) demonstrated that unrealistic standing wave patterns develop when
simulating single realizations of the random sea state (5.1). This is due to coherent
interference between wave components of the same frequency at different angles, which is
referred to as the phase locking phenomenon. This was also shown to be independent from
the number of wave directions Ntr chosen to simulate the sea state. As a consequence,
the sea state is not ergodic, which can be verified by expressing the time average of the
wave energy as the autocorrelation of the signal (5.1) evaluated at the origin (see Ochi
1998), i.e.

P =
1

2

Ntr∑
i=1

a2i +
1

2

Ntr∑
i=1

Ntr∑
j=1, j ̸=i

aiaj cosAij(x, y), (A 1)

where

Aij(x, y) = k0(x(cos τj − cos τi) + y(sin τj − sin τi)) + εj − εi.

The first term in (A 1) corresponds to the target mean energy of the incident spec-
trum, which we seek to generate uniformly over the domain. The second term contains
all interactions between waves travelling at different angles and depends on the space
variables, so the wave energy is not uniform and the sea state is not ergodic. The target
mean energy can be partially recovered by taking an ensemble average over many ran-
dom realizations of the sea state (5.1). The wave energy error then decays as the square
root of the sample size (a property of ensemble averaging) with the second term in (A 1)
averaging out to zero.
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In practice, the uniformity of the wave energy in the spatial domain (i.e. the ergodicity
condition) can only be approximated by averaging over a sufficient number of realiza-
tions. We perform Monte-Carlo simulations to analyze the variability of the mean energy
(A 1) at the origin. We simulate a monochromatic sea state with period T = 9 s and
energy spreading function given by (5.2), recalling that no ice cover is present for these
simulations. Simulating (5.2) for 1000 realizations of the sea state (5.1) evaluated at
(x, y) = (0, 0), we find the 95% confidence interval for estimating the mean wave energy
P̄ is 0.06 < P̄ < 3.7 with expected value 1, accounting for the fact that P is exponen-
tially distributed (Jefferys 1987). This shows the significant variability of the mean wave
energy on the random variable of the sea state model. The variability can be reduced
by averaging over a sample of mean energy estimates. We generate a new distribution of
mean energy P̄ by estimating (A 1) at different locations of the open ocean, where each
mean is obtained by averaging over 50 realizations of the sea state. Invoking the central
limit theorem, the distribution of P̄ is normal, with 95% confidence interval P̄ ≈ 1±0.28.
This theoretical result was confirmed by numerical experiments.

We extend the analysis by estimating the error on the mean energy introduced by
the ensemble averaging method to approximate ergodicity. Using the 1000 simulated sea
states generated earlier, we estimate the relative standard error of the mean energy on a
single realization of the sea state to be ≈ 100%. On the other hand, the relative standard
error of the mean energy estimated by averaging over 50 random realizations of the sea
state is reduced ≈ 14%. From the slow convergence property of Monte Carlo simulations,
we estimate that it would take approximately 10000 simulations to reduce further the
relative error to 1%.

Appendix B. Random array generator

We generate the FSD in a given slab using a binning approach, whereby a small number
of floe radii (or bins) is considered, henceforth reducing the number of single floe solutions
to compute. The inputs of the procedure are the dimensions of the ice-covered region in
the slab, i.e. the width Lx and breadth Ly, the number of bins Nb, the ice concentration
c, the minimum and maximum floe radii amin and amax, and the exponent in the power
law distribution κ. Given these parameters, we determine the number of floes Ni with
radius ai, for 1 ⩽ i ⩽ Nb and randomly position each floe in the slab using a circle
packing algorithm. The algorithm is outlined here:

1. define uniformly distributed bins ai, 1 ⩽ i ⩽ Nb, with a1 = amin and aNb
= amax;

2. compute proportionality constants for each bin

λi =
ā1−κ
i+1 − ā1−κ

i

a1−κ
max − a1−κ

min

;

3. compute the total number of floes in the slab

Nf =

⌈
cLxLy

π
∑Nb

i=1 λia2i

⌉
;

4. compute the number of floes in each bin

Ni = ⌈λiNf⌉;
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5. adjust the ice-covered domain dimensions to obtain the desired ice concentration

L =
π
∑Nb

i=1 Nia
2
i

cLy
;

6. position each floe iteratively at random in the ice-covered domain, such that floe/floe
boundaries and floe/domain boundaries do not intersect (circle packing algorithm).

In step 2, we have defined āi = (ai−1+ai)/2, 2 ⩽ i ⩽ Nb−1, with ā1 = a1 and āNb
= aNb

.
In steps 3 and 4, ⌈.⌉ denotes the ceiling function, which then introduces a discrepancy in
the concentration of ice floes. Step 5 adjusts the width of the domain to generate an FSD
with concentration as specified in the inputs. In step 6, floes are positioned in the domain
iteratively in decreasing order of sizes, allowing us to reach higher concentrations.
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