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The probability of epidemic fade-out is non-monotonic
in transmission rate for the Markovian SIR model with

demography

P. G. Ballard1,∗, N. G. Bean2,, J. V. Ross3,

Abstract

Epidemic fade-out refers to infection elimination in the trough between the first
and second waves of an outbreak. The number of infectious individuals drops to
a relatively low level between these waves of infection, and if elimination does not
occur at this stage, then the disease is likely to become endemic. For this reason,
it appears to be an ideal target for control efforts. Despite this obvious public
health importance, the probability of epidemic fade-out is not well understood.
Here we present new algorithms for approximating the probability of epidemic
fade-out for the Markovian SIR model with demography. These algorithms are
more accurate than previously published formulae, and one of them scales well
to large population sizes. This method allows us to investigate the probability
of epidemic fade-out as a function of the effective transmission rate, recovery
rate, population turnover rate, and population size. We identify an interesting
feature: the probability of epidemic fade-out is very often greatest when the
basic reproduction number, R0, is approximately 2 (restricting consideration
to cases where a major outbreak is possible, i.e., R0 > 1). The public health
implication is that there may be instances where a non-lethal infection should
be allowed to spread, or antiviral usage should be moderated, to maximise the
chance of the infection being eliminated before it becomes endemic.
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1. Introduction

The ultimate goal of modelling infectious disease dynamics is to gain insight
into how to use resources best to eliminate infection. This may be achieved
by making invasion difficult through minimising the probability of a major out-
break, for example through the use of prophylactic vaccination, antivirals or
contact tracing [3, 4, 23].

For endemic diseases, with wide prevalence, once again the predominant
focus is on reducing transmission as much as possible, and there have been a
number of studies calculating the mean time to endemic fade-out [26, 20, 13].

Much less attention has been paid to what is the optimal approach to adopt
when a major outbreak occurs. Typically, focus has been given to minimising
the amount of infection – either the rate of new infections, or the total number
of infections over the first wave of an outbreak – for example, through the use of
antivirals, and once available, vaccination (e.g., [17, 7]). Here we instead focus
on the probability of epidemic fade-out - that is, the probability of infection
being eliminated between the first and second waves of infection.

In fact, a more comprehensive understanding of the probability of epidemic
fade-out is named as one of the five challenges (for stochastic epidemic models
involving global transmission) by Britton et al. [8], supporting earlier calls [1,
10]. The interest in this quantity for infection elimination is that following
the first wave of an outbreak, the number of infectious individuals drops to a
relatively low level. Then, if fade-out does not occur, it is likely that the disease
will become endemic. Hence, this “first trough” of infection appears intuitively
to be an ideal target for elimination.

We study a Markovian SIR model with demography ([26, 19, 2]), and in
particular the probability of epidemic fade-out as a function of the effective
transmission rate, recovery rate, population turnover rate, and population size
parameter. We identify the ubiquity of a non-monotonicity property of the
probability of epidemic fade-out as a function of the effective transmission rate
(holding other parameters fixed). In fact, the probability of epidemic fade-out is
very often greatest when the basic reproduction number, R0, is approximately
2 (restricting consideration to cases where a major outbreak is possible, i.e.,
R0 > 1). This means that there may be cases when, faced with an infectious
outbreak, it would be beneficial to not take action to reduce R0.

The identification of this phenomenon was achieved through the development
of a numerical method which is highly accurate and efficient for computation
of the probability of epidemic fade-out. To our knowledge, as supported by the
paper [8], there have been only two existing methods proposed, both approx-
imations, for evaluating this probability [25, 18]. These existing methods are
asymptotic approximations, with accuracy improving in the limit as the pop-
ulation size parameter tends to infinity. Our method has the benefit of being
highly accurate across a wider range of population sizes, including moderate-
sized populations, whilst still using light computer resources and hence scaling
well to large population sizes.

In the next section we introduce the Markovian SIR model with demography
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that we study, before discussing deterministic and diffusion approximations of
this model which are relevant to existing methods and our new method for
evaluating the probability of epidemic fade-out. We then review the existing
approximations. In Section 3 we detail our new method for computing the
probability of epidemic fade-out. In Section 4.1 we validate its accuracy and
efficiency, and in Section 4.2 we investigate the dependence of the probability of
epidemic fade-out on the model parameters, identifying the ubiquity of a non-
monotonicity property in the effective transmission rate. Finally, we conclude
this work and discuss future research ideas.

2. Background

In this section we present the two existing methods for approximating the
probability of epidemic fade-out [25, 18]. To achieve this, we first introduce
the underlying model assumed in these earlier studies, and also two asymptotic
approximations of this model. These are not only required for both existing
methods but also for our new methods to be presented in Section 3.

2.1. The Markovian SIR model with demography

Following previous work [25, 18], we adopt the Markovian SIR model with
demography [26, 19, 2]. However, we note that our methods can be easily
modified to suit other SIR models which involve replenishment of susceptibles.

The well known SIR model puts every individual in the population into one
of three classes: “S” for Susceptible, “I” for Infectious, and “R” for Recovered
(or Removed). Let S, I and R denote the number of individuals in the respective
states. Then, we assume that susceptible individuals become infectious at rate
βSI/N , and infectious individuals recover at rate γI, where β is the effective
transmission rate parameter, 1/γ is the average infectious period of an individual
and N is the total population size. The population is closed, and hence of a
constant size.

The SIR model with demography extends the SIR model by also having
births (or immigration) of susceptibles, at a fixed rate µN , and deaths (or
emigration) from each state at rates µS, µI and µR respectively, where µ is
the population turnover rate parameter. We note that this means the actual
population size, S + I + R, is no longer fixed, but that the birth rate is held
constant (i.e., N , the population size parameter, is constant). A consequence
of the latter, along with the fact that the number of recovered individuals, R,
has no direct bearing on the other states, and that our interest herein is on the
number of infectious individuals, is that we may describe the state of the system
by (S, I) [13] with state space {(S, I) : 0 ≤ S, I}. The Markovian SIR model
with demography we consider herein is detailed in Table 1 and Figure 1.
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S I
βSI/NµN

µS (γ + µ)I

Figure 1: Diagram of the Markovian SIR model with demography. Note, the
“R” state is redundant and has been removed.

Description Transition Rate

Infection (S, I)→ (S − 1, I + 1) βSI/N

Birth of Susceptible (S, I)→ (S + 1, I) µN

Removal of Susceptible (S, I)→ (S − 1, I) µS

Removal of Infectious (S, I)→ (S, I − 1) (γ + µ)I

Table 1: Events, transitions and their rates for the Markovian SIR model with
demography.

2.2. Asymptotic approximations: The density process

We now state two limiting results of the SIR model with demography, in
the limit as N becomes large [15, 16, 22]. These approximations assist us in
defining the probability of epidemic fade-out, and are furthermore made use
of in the two existing methods for approximating the probability of epidemic
fade-out, discussed in Section 2.3, and in our own methods to be introduced in
Section 3.

Let YN (t) be a process following the model defined in Section 2.1, with
each value being an (S, I) pair, and with initial value (S0, I0). The associated
density process is XN (t) = YN (t)/N , with each possible value x being an (s, i)
pair, where s = S/N and i = I/N ; and the initial value is x0 = (s0, i0) =
(S0/N, I0/N). The density process is important because it allows us to analyse
the limiting behaviour as N →∞.

Let f(x, l) be the transition rate of the density process from state (x) to
state (x + l/N), where l can take on the possible 1-step transition values in
Table 1: (−1, 1), (1, 0), (−1, 0) and (0,−1), respectively. Also define for the
density process:

F (x) =
∑
l

lf(x, l) = (−βsi+ µ(1− s), βsi− (γ + µ)i) ; (1)

B(x), a matrix whose (j, k)th element is given by bj,k =
∂fj
∂xk

,

⇒ B(x) =

(
−βi− µ −βs
βi βs− (γ + µ)

)
; (2)
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and G(x), a matrix whose (j, k)th element is given by gj,k =
∑
l lj lk f(x, l),

⇒ G(x) =

(
βsi+ µ(1 + s) −βsi

−βsi βsi+ (γ + µ)i

)
. (3)

Then by Theorem 3.1 of Kurtz [15] and Theorem 3.2 of Pollett [22], we have:
In the limit as N →∞, XN (t) weakly converges to a process which at time t is
Gaussian with mean X(t) and covariance Σ(t)/N ; where X(t) and Σ(t) are the
solutions to:

dX(t)

dt
= F (X(t)), X(0) = (s0, i0); (4)

dΣ(t)

dt
= B(X(t))Σ(t) + Σ(t)B(X(t))T +G(X(t)), Σ(0) = 0. (5)

The solution to (4) when multiplied by N , NX(t), is also known as the
deterministic approximation to YN (t). A typical solution of this approximation
is shown in Figure 2. The basic reproduction number corresponding to this
approximation is,

R0 = β/(γ + µ) . (6)

Assuming R0 > 1, the process begins at a point A, with a large number of
susceptible individuals and a small number of infectious individuals (typically
A = (S, I) = (N − 1, 1)). The outbreak rises through point B to point C, falls
through point D to point E, and then rises again to point F . The cycle then
repeats, on a smaller scale, as it spirals in towards the endemic value (Se, Ie).
Solving (1) for F (x) = (0, 0) and scaling by N gives

(Se, Ie) = N

(
(γ + µ)

β
,
µ(β − γ − µ)

β(γ + µ)

)
. (7)

The maximum C and the minimum E of the deterministic infection curve occur
when S = Se, and we have chosen the points B, D and F to be at I = Ie.

2.3. Previous methods

The two main previous papers on this topic are by van Herwaarden [25] and
Meerson and Sasorov [18]. Both of these methods share in common the first
part of the analysis: they assume the outbreak follows the trajectory of the de-
terministic approximation until I falls below Ie (i.e., until point D in Figure 2),
and then set up a two boundary hitting probability problem. There is the nat-
ural lower absorbing boundary at I = 0, and the probability of hitting this
boundary before the upper boundary is used to approximate the probability of
epidemic fade-out, here known as p0. The choice of the upper absorbing bound-
ary and method of solution of the two boundary hitting probability problem
distinguishes the two methods.

van Herwaarden [25] chooses the upper absorbing boundary to be I = Ie.
He then approximates p0 as the probability of hitting the I = 0 boundary
before the upper boundary. To do this, van Herwaarden assumes S and I
are continuous, then simplifies analysis by using the Fokker-Planck equation,
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Figure 2: A deterministic trace with N = 1000, β = 2.5, γ = 1, µ = 0.1,
and initial point (999, 1), with endemic values Se and Ie (dashed lines). The
outbreak starts at A, goes through points B, C, D and E through to F , and
converges on (Se, Ie). The first trough is between points D and F .

effectively assuming the diffusion approximation as presented in Section 2.2. He
uses boundary layer analysis to obtain an approximation to the probability of
absorption at the lower boundary.

This results in the following approximation of p0 (where W0 is the principal
branch of the Lambert W function, and Γ is the gamma function), assuming
1/
√
N � µ� 1:

x1A = (−γ/β)W0 ((−β/γ)exp(−β/γ)) ,

C3 = −ln

(
−βx1A
βx1A − γ

)
−
∫ 1

x1A

(
x1A

1− x1A
γ (s− s ln (s)− 1)

βs2 (1− s+ (γ/β) ln (s))
+

1

s− x1A

)
ds ,

K =
1

µ
exp

(
βx1A + (β − γ) ln (1− x1A)

µ
+ C3

)
,

p0 = exp

(
−KNµ2 (β/µ)

(β−γ−µ)/µ
exp (−β/µ)

(γ + µ) Γ ((β − γ − µ) /µ)

)
.

(8)

Meerson and Sasorov [18] instead use a slightly different upper absorbing
boundary, namely a diagonal line from (Se, Ie) to (N, 0), and employ the WKB
(Wentzel-Kramers-Brillouin) expansion method [6] in place of the Fokker-Planck
equation to solve the two boundary problem. This results in the following
approximation of p0:
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K = β/µ ,

δ = 1− (γ + µ)/β ,

xm = (−(γ + µ)/β)W0 ((−β/(γ + µ))exp(−β/(γ + µ)))− 1,

Q1 =

∫ xm

0

(
s (s+ δ)

(1 + s)
2

(s− (1− δ) ln (1 + s))
− xm

(1 + xm) (s− xm)

)
ds ,

ym =
(δ + xm)xm

1 + xm

(
−xm
δ

)Kδ
exp

(
K (xm + δ)−

(
1 + x−1

m

)
Q1

)
,

C =
ymδ

2π (1− δ)
,

S0 = C

√
2π

Kδ
,

p0 = exp (−NS0) .

(9)

The analysis assumes NS0 � 1, and hence p0 close to 0; however it turns
out to be quite accurate in nearly all cases.

We assess the accuracy of these approximations in Section 4.1. However, we
note that a nice property of these methods is that they give explicit mathemat-
ical expressions for p0, with negligible computing time.

3. New algorithms

We now consider new algorithms for approximating the probability of epi-
demic fade-out. These methods are based upon reducing the dependency upon
asymptotic approximations, yet still seeking to retain computational efficiency.

Similar to the existing methods, we decompose the problem into two parts.
We first consider the state of the process upon its first entrance to the first
trough. In place of the deterministic approximation used in the earlier work, we
calculate an approximate distribution of the process based upon the diffusion
approximation as presented in Section 2.2; further details are presented below
in Section 3.2.

In the second part of our methods, we calculate the probability of reaching
I = 0 before exiting the first trough. In this region, where I is relatively small
and stochastic effects are important, we use discrete-state stochastic models. We
present two alternative ways to do this: an exact computation in Section 3.3.1,
and an efficient approximation in Section 3.3.2. This theoretically should fur-
ther improve upon previous methods, which used asymptotic approximations
(diffusion or WKB) for this calculation. In our discrete-state, stochastic rep-
resentation of the system, the definition of the first trough can be unclear; for
this reason, we commence by providing a precise definition of epidemic fade-out,
which we adopt in our methods.
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3.1. Definition of epidemic fade-out

Since we are dealing with a discrete system, we round up the endemic fixed
point to the next highest integer pair, i.e. Sd = dSee and Id = dIee. Let
T = {(S, I) : S < Sd, I = Id}, i.e. the set of states on the dotted (green) line
in Figure 3. We define the entrance to the first trough as the point when the
system first enters T .

It is now tempting to define the end of the first trough as the point when the
system next reaches I > Id. However, due to stochastic effects, it is possible for
the system to immediately jump up to I > Id, but this certainly does not mean
the end of the first trough. Therefore we need to set the upper boundary to a
value greater than Id in the S < Sd region. So long as it is sufficiently far from
Id to avoid small fluctuations, this value is not critical. Hence 2Id was chosen
because it means that T is an equal distance from each absorbing I boundary.

So we define the end of the first trough to be when the system reaches either
I = 2Id, or both S ≥ Sd and I ≥ Id; i.e., the dashed (red) lines in Figure 3.

100 200 300 400 500 600
S

0

20

40

60

80

100

120

I

A

B

C

D

E

FId Id

2Id

Sd

Figure 3: Deterministic trace with the same parameters, and same points D, E
and F , as Figure 2. States in T , which denotes the start of the first trough, are
shown by the dotted (green) line. The end of the first trough is shown by the
dashed (red) line.

We then define p0, the probability of epidemic fade-out, as the probability
that the process is absorbed at I = 0 before it exits the first trough (that is,
before it reaches the dashed red line), given that the process reaches the start
of the first trough.

3.2. Part I: The distribution upon first entrance

In the first part of our method we approximate the distribution of the pro-
cess upon its first entrance to T , i.e., the distribution of the process upon first
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reaching the green dotted line in Figure 3. Results of Ethier and Kurtz [11] pro-
vide this distribution, corresponding to the diffusion approximation presented
in Section 2.2.

Let τ be the time at which X(t) first enters T , i.e. τ = min{t ≥ 0 : X(t) ∈
T}. We may then approximate the “hitting distribution” of X(t) when it first
enters T , as now described.

If we use the subscript j to denote the jth element of a vector, and sub-
script j, k to denote the row j, column k element of a matrix; then by applying
Theorem 11.4.1 of Ethier and Kurtz [11] we have: In the limit as N → ∞,
the distribution of the density process XN (t) when it first enters T is Gaussian,
with mean X(τ)1 and variance

H =

(
Σ(τ)1,1 +

(
F (X(τ))1
F (X(τ))2

)2

Σ(τ)2,2 − 2

(
F (X(τ))1
F (X(τ))2

)
Σ(τ)1,2

)
/N ;

(10)
where F (x), X(t) and Σ(t) are as defined in equations (1), (4) and (5). We start
the diffusion at point B in Figure 2 (that is, Σ(t) = 0 at point B) because we
condition on a major outbreak occuring.

In our methods, we approximate the hitting distribution of S in T by dis-
cretising a Gaussian distribution with mean NX(τ)1 and variance N2H, and
renormalising such that S ≥ 0 and S < Sd (because S ≥ Sd corresponds to
sample paths which never meet the criteria of entering the first trough). We
call this discrete, renormalised distribution ∆, and it is the initial distribution
for the calculations in Sections 3.3.1 and 3.3.2.

3.3. Part II: Modelling the behaviour within the first trough

For the second part of the computation we define the first trough Markov
chain, with states arranged as in Figure 4. Each state is represented by an (S, I)
pair. Column S has states (S, 0) to (S, 2Id) for S ≤ Sd, and has states (S, 0)
to (S, Id) for S > Sd. There are two absorbing boundaries, representing the
two possible outcomes: The lower absorbing boundary corresponds to epidemic
fade-out occurring, and consists of the states (S, 0) for all S; the upper absorbing
boundary corresponds to epidemic fade-out not occurring, and consists of the
states (S, 2Id) for S < Sd, (S, Id) for S > Sd, and (S, n), for all n ∈ [Id, 2Id], for
S = Sd.

3.3.1. Exact model

We can evaluate p0 exactly (for a given starting distribution, ∆). One way
to solve this, using standard techniques [21], would be to simultaneously solve
equations for all the approximately (N + Sd) × Id points in the first trough.
However we may take advantage of the fact that almost invariably 2Id � N ,
and solve it more efficiently by evaluating a column at a time, as now described.

For each column S, create a stochastic transition matrix, AS , of the first exit
from column S to its neighbouring columns. We partition AS into two matrices
FS and BS – such that AS = [FS BS ] – which represent the first exit into the

9



0 2 4 6 8 10
S

0

1

2

3

4

5

6

7

8

I

Figure 4: A two-dimensional representation of the states in the first trough
Markov chain, with Sd = 6 and Id = 4. The states in the absorbing boundaries
are shown as solid circles. States in T (the start of the first trough) are denoted
by triangles, and contain ∆, the distribution of the process when it enters the
first trough. States continue infinitely to the right.

next and previous column, respectively. Provided state (S,m) is not in the upper
absorbing boundary: then the (m,n)th element of FS is the probability that the
first exit from column S is into state (S + 1, n), given that the process starts
in state (S,m); and the (m,n)th element of BS is the probability that the first
exit from column S is into state (S−1, n), given that the process starts in state
(S,m). These probabilities are calculated exactly for the Markovian SIR model
with demography, which has the transition rates illustrated in Figure 5(a).

The upper absorbing boundary is an artificial absorbing boundary, so we
need to treat it in a specific manner. We define FS and BS such that any
probability mass in the upper absorbing boundary of column S moves to the
upper absorbing boundary of column S+1. More specifically, if the state (S,m)
is in the upper absorbing boundary, then row m of [FS BS ] is all zeros, except
the (m,n)th element of FS which is equal to 1, where n = 2Id if S < Sd, or
n = Id if S ≥ Sd.

We define PS as the matrix of first entry into column S + 1 from column S.
So the (m,n)th element of PS is the probability that the first entry to column
S + 1 is into state (S + 1, n), given that the process starts in state (S,m).

With these definitions, we establish the recursive relation:

PS =

{
F0 if S = 0

(I −BSPS−1)−1FS if S > 0,
(11)

where I (here only) is the identity matrix. The FS and BS matrices are straight-
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βSI/N

(γ + µ)I

µN

µS

(a)

βSI/N

max(µ(N − S)− βSI/N, 0)

(γ + µ)I

(b)

Figure 5: Transition rates from state (S, I) (except when state (S, I) is in the
upper absorbing boundary. (a) shows the exact model (Section 3.3.1). (b)
shows the approximate model (Section 3.3.2), in which every infection event
(rate βSI/N) or removal of susceptible event (rate µS) is “paired” with a birth
event (rate µN).

forward to calculate, so we can determine each PS matrix.
Now define the vector DS to be the distribution of ∆ in column S. The

only non-zero element of DS is element Id, and then only if S < Sd. Finally, we
define ES to be the distribution of all probability mass which first entered the
first trough at column S or less, on the first trough Markov chain’s first entry to
column S. By definition, all probability mass enters the first trough at S < Sd.
So for S ≥ Sd, the definition of ES simplifies to: the probability distribution on
the first trough Markov chain’s first entry to column S.

We then use PS and DS+1 to calculate ES+1 through the recursion:

E0 = D0,

ES+1 = ESPS +DS+1 if S ≥ 0.
(12)

As we increment S, eventually all but a vanishingly small amount of the
probability mass is at one of the absorbing boundaries. That is, for any δ, there
is an S ≥ Sd such that elements 0 and Id of ES sum to greater than 1− δ; when
this occurs, p0 is taken to be element 0 of ES .

For a given ∆, this method gives an exact result (to the accuracy of the δ
chosen). But (as we shall see in Section 4.1) it does not scale well to very large
population sizes. This is because it requires the calculation and storage of four
matrices (FS , BS , PS−1 and PS) with a maximum size of (2Id+1)× (2Id+1). We
now proceed to consider an approximate model which reduces the computational
overheads.

3.3.2. Approximate model

Considering the method in Section 3.3.1, we can substantially reduce both
evaluations and storage by making the following observation: whenever the
system goes back from column S to column S − 1, it returns to column S
after an unknown number of intermediate events, followed by a “birth” event
(because the birth events, at rate µN , are the only events which increase the
number of susceptibles). So let us - as an approximation - assume that this
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“unknown number of intermediate events” is in fact no events. In other words,
every “death of a susceptible” event (at rate µS) is paired with a birth event
(at rate µN); and every infection event (at rate βSI/N) is also paired with a
birth event. So, with this assumption, we calculate the jump chain transition
probabilities using the one step transition rates shown in Figure 5(b) rather
than Figure 5(a).

If we were to follow the analysis of Section 3.3.1, that would mean BS = 0
and so equation (11) reduces to PS = FS . However it is possible to avoid
generating FS (or any other large matrices) altogether.

Given ES and the transition probabilities within column S, we can calculate
the expected number of visits to each state before exiting the column. Since
each state (S, I) only communicates with the adjacent states (S, I − 1) and
(S, I + 1), this is a tri-diagonal series of simultaneous equations, which can be
solved using an efficient technique such as the Thomas algorithm [12]. These
expected numbers of visits multiplied by the transition probabilities to the right
(determined from the transition rates in Figure 5(b)) give ES+1. In other words,
with reference to equation (12), we calculate the vector ESPS directly without
calculating PS .

The elements of ES corresponding to the absorbing boundaries (I = 0, and
I = 2Id or Id) accumulate probability mass as S increments. As in Section 3.3.1,

for sufficiently large S ≥ Sd, all but a vanishingly small amount of probability
mass is absorbed, allowing us to efficiently approximate p0.

Given the simpler computation and low storage requirement, it is no surprise
that this is much faster than the exact method in Section 3.3.1. But, as we shall
show in the next section, this method is also very accurate.

4. Results

4.1. Accuracy and efficiency

In this section we compare the accuracy of all methods – the previous work of
van Herwaarden [25] and Meerson and Sasorov [18] as presented in Section 2.3,
and our new algorithms as detailed in Section 3.

As references, we also add an exact computation, and a Monte Carlo sim-
ulation. The exact computation uses a truncated state space, with an extra
absorbing boundary at S + I = (1.1)N . The amount of probability mass ab-
sorbed at that boundary is extremely low (never greater than 10−5) and does
not affect the results significantly. For both the exact computation and Monte
Carlo simulation, as well as our methods, we calculate p0 using the definition
in Section 3.1. For previous works, we use the expressions in Section 2.3.

Since we are interested in evaluating a probability which is only state (and
not time) dependent, we may scale time and hence fix γ = 1, so time is in units
of the average infectious period of an individual.

We chose seven values of the population size parameter, N : 1000, 3000,
10000, 30000, 100000, 300000 and 1000000; and, six effective transmission rate
parameter values, β: 1.1, 1.2, 1.5, 2, 4 and 8. For each of these 42 pairs of

12



values, we chose three values of population turnover rate parameter µ, to give
final p0 values of approximately 0.1, 0.5 and 0.9 respectively. In a few cases
(notably for low N and low β), an appropriate µ value could not be found. The
µ values used are given in Table A.1 in Appendix A.

For N ≤ 3000 all methods were compared against an exact computation.
For larger N they were all compared against Monte Carlo simulations. The
worst case and average errors for each N value are shown in Figure 6. Error
bars are due to the uncertainty in the result from the Monte Carlo simulations,
which require a very long run time for large N .
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Figure 6: Plot of worst case and average error versus population size N , with
±2σ error bars.

We see that both our methods are noticeably more accurate than the pre-
viously published results. We also see the accuracies of our two methods are
comparable. This suggests that most of the error is in the diffusion approx-
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imation of ∆ (Section 3.2), rather than the Markov chain approximation of
Section 3.3.2.

We also consider the efficiency of our methods, and compare them to exact
computations and Monte Carlo simulations. To give comparable (though gen-
erally lower) accuracy, the Monte Carlo simulations were run long enough to
give a standard deviation of σ = 0.005 = 0.5% in their approximations of p0.
All tests were run on a 2014 iMAC (Intel i5 core, 2.7 GHz, 8 GB RAM, Mac
OS X) running Cython [5]. Computation time for different methods is shown
in Figure 7. The methods of van Herwaarden and Meerson and Sasorov are not
shown, because they take negligible time (in the milliseconds), and their times
are independent of N . Therefore these methods remain the best for getting an
approximate answer quickly.
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Figure 7: Plot of computation time versus population size N . Mean compu-
tation times are shown with solid lines. Slowest computation times are shown
with dashed lines.

The time for the exact computation is approximately proportional to N3,
and quickly becomes impractical.

Our first method, based upon a diffusion approximation to the first entrance
to the first trough, combined with an exact computation (Section 3.3.1) also has
a computation time approximately proportional to N3, and becomes impractical
as N approaches 105.
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Our second method, based upon a diffusion approximation to the first en-
trance to the first trough, combined with an approximate model (Section 3.3.2)
has a time which is approximately proportional to N2 and so is practical up to
at least N = 107. The small memory overhead means even larger sizes may be
computed if a long run time is not a concern.

The time for a set of Monte Carlo simulations is proportional to a little less
than N2, though our method is projected to be faster and more accurate up to
at least N = 107.

So for a very wide range of N (from a few thousand, to the millions), the
diffusion plus approximate model algorithm appears to be the most accurate of
practical methods.

4.2. Analysis of the results

We used the method of Section 3.3.2 to run a larger set of tests, to ex-
plore how the probability of epidemic fade-out changes as a function of model
parameters.

For N = 1000, 10000, 100000 and 1000000, we tested: γ = 1; 40 β values
from 1.1 to 5, stepping in increments of 0.1; and µ values from 0.010 up to 0.089,
0.049, 0.029 and 0.019 for the respective values of N , stepping in increments of
0.001. Contour plots of the p0 values are shown in Figure 8.

Figure 8 shows the interesting result that p0 is generally non-monotonic in
β. Naively, one might expect a higher infection rate β to cause the infection
to be more persistent, and so give a lower p0. What we instead see, in most
cases, is a local maximum near β = 2. Since µ � 1 and γ = 1, it follows that
R0 = β/(γ + µ) ≈ β and so the local maximum is also near R0 = 2.

The main reason for the non-monotonicity, and the peak near R0 = 2, can
be seen by considering the traces for R0 = 5, 2 and 1.3 in Figure 9. Note these
are the solutions to Equation (4) (scaled by N), and hence the deterministic
approximations to the epidemic. We define Im to be the minimum I value in
the first trough of the deterministic approximation.

We may rearrange Equations (1) and (7) to give dI/dt = (βI/N)(S−Se) and
hence d(ln(I))/dt = (β/N)(S − Se). This means that for a given deterministic
curve, the rate of change of ln(I) is proportional to S−Se. It can also be shown
that the minimum S occurs at I > Ie.

If we compare the R0 = 2 curve to the R0 = 1.3 curve, we see that the
R0 = 2 curve starts further from its endemic point; that is, it has a higher
initial S − Se value. This means S − Se is higher in the early stages of the
outbreak, which causes I to rise more steeply and for longer, so the maximum
I−Ie value is higher. This in turn gives S more time to fall, so the curve reaches
a lower minimum S−Se value. Finally, this gives more time for I to fall, so the
R0 = 2 curve falls to a considerably lower Im value then the R0 = 1.3 curve.
Biologically, the R0 = 2 case indicates the infection “burning out” - it uses up so
much resources (indicated by S falling low) that it is slow to re-establish itself,
so it falls to a low Im, giving it a higher probability of epidemic fade-out.

If we compare the R0 = 5 curve to the R0 = 2 curve, the R0 = 5 curve has
an even higher initial S − Se value, and so rises to a higher maximum I − Ie.
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Figure 8: Constant p0 contours for various β, µ and N values, with γ = 1 and
(S0, I0) = (N − 1, 1). The p0 = 0.1 contour is dashed, the p0 = 0.9 contour is
dotted, and the contours for p0 = 0.2 to 0.8 in steps of 0.1 are solid. For most
combinations of N and µ, p0 peaks near β = 2.

But then, as S falls, it is limited by the condition that S ≥ 0. So it does not
fall to as low a minimum S − Se value as the R0 = 2 curve does. This in turn
means that its Im is not as low as for R0 = 2. It also only has to reach a
comparatively low S before S > Se, and the deterministic curve begins to rise
again. Biologically, R0 = 5 corresponds to a case where the infection rate is so
high that the infection can re-establish itself from comparatively low resources.

So Se ≈ N/2 corresponds to a “sweet spot” where the curve can swing from
a high S−Se to a low S−Se, giving the most time for the curve to fall to a low
Im. And it follows from (6) and (7) that R0 = 2 corresponds to Se = N/2, and
so this sweet spot occurs near R0 = 2. This is illustrated in Figure 10, which
plots Im versus R0 for the same parameters as used in Figure 9, with the lowest
Im occuring at R0 ≈ 2.4.

When we consider stochastic effects, a lower Im corresponds to a greater
probability of absorption at I = 0, and hence a higher p0. However the prob-
ability of aborption also depends on the time the deterministic process spends
near Im. A longer time near Im corresponds to a longer time near the I = 0
absorbing boundary. This gives the process more opportunity to be absorbed
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Figure 9: Comparison of deterministic traces, on a logarithmic I scale, for
N = 100000, γ = 1, µ = 0.02 and (S0, I0) = (N−1, 1). The R0 values of 5, 2 and
1.3 correspond to Se values of approximately N/5, N/2 and 4N/5 respectively.
The plus signs show the endemic points (Se, Ie) to which the curves converge.
The dots mark the maximum I, minimum S and first trough minimum I (Im).

due to stochastic effects, and so should lead to a higher p0.
It is shown in Appendix B that in the first trough of the deterministic pro-

cess, the time for which I < Im + ε, for sufficiently small ε, is monotonically
decreasing in βIm. This means it is also monotonically decreasing in R0Im. We
must handle this result with some care because Im is itself dependent on R0.
But it means that, in the region where the Im versus R0 curve is relatively flat,
a decrease in R0 gives an increase in p0. So we would expect the maximum p0
to occur at an R0 slightly lower than the R0 which gives rise to the minimum
Im. This is also illustrated in Figure 10. For this particular case the minimum
Im occurs at R0 ≈ 2.4, but the lowest p0 occurs at R0 ≈ 2.2.

5. Conclusion

We have presented a two stage method for calculating an accurate approx-
imation for the probability of epidemic fade-out. Using an approximate model
on the second stage gives an algorithm which is both fast and accurate. It is
more accurate than the previously published formulae, and scales much better
than exact computation methods. This technique can also be used in other
SIR-type models with replenishment of susceptibles (for instance, those with a
fixed population size).

A possible justification for why the approximate model of Section 3.3.2 re-
tains such a high level of accuracy is that in the first trough (when I is low), the
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Figure 10: Im and p0 plotted against R0, for N = 100000, γ = 1, µ = 0.02,
(S0, I0) = (N − 1, 1), and β = R0(γ + µ). In this example, the minimum Im is
at R0 ≈ 2.4, while the maximum p0 is at R0 ≈ 2.2.

birth events (µN) are almost always at a higher rate - and often a much higher
rate - than infection events (βSI/N). Therefore there is a very small penalty
(in terms of accuracy) for pairing every infection event with a birth event.

Further, comparing Figure 5(b) to Figure 5(a), we see that the approxima-
tion makes no change to the one step behaviour in the I (vertical) dimension. In
the S (horizontal) dimension, the behaviour is simplified, but the average drift
(µ(N−S)−βSI/N) is modelled correctly (except when µ(N−S)−βSI/N < 0,
but in those cases the Markov chain is near point F in Figure 3, so the com-
putation is nearly complete). So the S dimension is modelled accurately in the
first moment but not the second moment. It appears that this only introduces a
small error because the I dimension is much more critical than the S dimension.

Using this fast and accurate method, we have found that the probability
of epidemic fade-out often peaks when the basic reproduction number, R0, is
approximately 2 (restricting consideration to cases where a major outbreak is
possible, i.e., R0 > 1). This is because R0 ≈ 2 is high enough to use up a large
proportion of resources, but not so high that the infection can easily recover
from having few resources. The reason this occurs near R0 = 2 appears to be
due to the endemic point being near S = N/2.

A potential public health application is that there may be instances where
action against an infection should be limited, to maximise the chance of infection
being eliminated before it becomes endemic. We note there is some similarity
here to the observations of Rozhnova, Metcalf and Grenfell [24], that decreasing
R0 by vaccination may sometimes lead to higher persistence, though their study
was with respect to an already endemic infection, with seasonality.
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The question of whether a peak near R0 = 2 extends to other measures or
models, is a topic for future research. Another avenue for future research is to
determine methods which allow calculation of the probability of epidemic fade-
out for models with seasonal forcing (i.e., a time-dependent effective transmis-
sion rate parameter) [14]. This in turn could aid understanding of the Critical
Community Size for diseases such as measles in the pre-vaccine era [9].
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Appendix A

N β µ for p0 ≈ 0.9 µ for p0 ≈ 0.5 µ for p0 ≈ 0.1

1000 1.1 − 0.043 −
1.2 0.053 − −
1.5 0.034 0.084 −
2.0 0.033 0.060 0.112
4.0 0.025 0.041 0.064
8.0 0.015 0.025 0.039

3000 1.1 − 0.064 −
1.2 0.026 0.050 −
1.5 0.025 0.046 0.091
2.0 0.026 0.041 0.062
4.0 0.021 0.031 0.042
8.0 0.012 0.018 0.025

10000 1.1 0.020 0.051 −
1.2 0.017 0.038 0.095
1.5 0.019 0.030 0.046
2.0 0.021 0.031 0.041
4.0 0.017 0.024 0.031
8.0 0.010 0.014 0.018

30000 1.1 0.012 0.030 −
1.2 0.012 0.022 0.041
1.5 0.016 0.023 0.031
2.0 0.018 0.025 0.031
4.0 0.015 0.020 0.024
8.0 0.008 0.011 0.014

100000 1.1 0.008 0.016 0.033
1.2 0.009 0.015 0.022
1.5 0.013 0.018 0.023
2.0 0.015 0.020 0.025
4.0 0.013 0.017 0.020
8.0 0.007 0.010 0.012

300000 1.1 0.006 0.010 0.017
1.2 0.008 0.012 0.016
1.5 0.011 0.015 0.019
2.0 0.014 0.017 0.021
4.0 0.011 0.015 0.017
8.0 0.006 0.008 0.010

1000000 1.1 0.005 0.007 0.010
1.2 0.006 0.009 0.012
1.5 0.010 0.013 0.015
2.0 0.012 0.015 0.018
4.0 0.010 0.013 0.015
8.0 0.006 0.007 0.008

Table A.1: µ values used in Section 4.1
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Appendix B

Theorem. In the first trough of the deterministic process, the time θ for which
I < Im + ε, for sufficiently small ε, is monotonically decreasing in βIm.

Proof. Consider the deterministic plot of I versus S, as in Figures 2 and 3. At
the first trough minimum (point E), dI/dS = 0. For sufficiently small ε, we can
therefore treat d2I/dS2 as constant, and in the region where I < Im + ε, I is
parabolic when plotted against S. So the distance in the S dimension, for which
I < Im + ε, is monotonically decreasing in the parabola curvature d2I/dS2.

The rate at which the deterministic process moves in the S direction is dS/dt,
so θ is inversely proportional to dS/dt. This means that θ is monotonically
decreasing in (d2I/dS2)(dS/dt).

Substituting I = Ni and S = Ns into (1) gives

dS

dt
= µN − µS − βSI/N , (B.1)

dI

dS
=
dI/dt

dS/dt
=

βSI/N − (γ + µ)I

µN − µS − βSI/N
(B.2)

⇒ d2I

dS2
=

(βI/N)(µN − µS − βSI/N)− [βSI/N − (γ + µ)I] (−µ− βI/N)

(µN − µS − βSI/N)2

=
Iµ(β − γ − µ)− βI2(γ + µ)/N

(µN − µS − βSI/N)2
. (B.3)

At the first trough minimum of the deterministic curve we have defined
I = Im. Also dI/dS = 0, so it follows from (B.2) that S = N(γ + µ)/β, and
N − S = N(β − γ − µ)/β. Substituting these into (B.1) and (B.3) gives

dS

dt
= µN(β − γ − µ)/β − Im(γ + µ) ,

d2I

dS2
=
Imµ(β − γ − µ)− βIm2(γ + µ)/N

[µN(β − γ − µ)/β − Im(γ + µ)]
2 ;

⇒
(
d2I

dS2

)(
dS

dt

)
=
βIm
N

. (B.4)

Therefore θ is monotonically decreasing in βIm.
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