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Abstract

We present a new method for determining optimal Bayesian experimental

designs, which we refer to as ABCdE. ABCdE uses Approximate Bayesian

Computation to calculate the utility of possible designs. For problems with

a low-dimensional design space, it evaluates the designs’ utility in less com-

putation time compared to existing methods. We apply ABCdE to stochas-

tic epidemic models. Optimal designs evaluated using ABCdE are com-

pared to those evaluated using existing methods for the stochastic death and

susceptible-infectious (SI) models. We present the Bayesian optimal exper-

imental designs for the susceptible-infectious-susceptible (SIS) model using

ABCdE.
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1. Introduction

Optimising the design of experiments is an important consideration in

many areas of science, including but not limited to: biology (Faller et al.

(2003)), chemical engineering (Telen et al. (2012)), clinical trials (Berry

(2004)) and epidemiology (Pagendam and Pollett (2013)). The theory of

optimal experimental design is a statistical tool that allows us to determine

the optimal experimental protocol to gain the most information about model

parameters, given constraints on resources.

The aim of this paper is to introduce a new, efficient method of determin-

ing optimal Bayesian experimental designs, which we call ABCdE, that uses

only simulations from the model. As a demonstration, we provide a compar-

ison of this new method to existing methods. The improvement in efficiency

of our method comes about when searching across a low-dimensional design

space.

The particular problem we address is when to observe an epidemic pro-

cess in order to gain the most information about the model parameters. We

consider a death process and a susceptible-infectious (SI) epidemic model,

previously considered in a Bayesian framework by Cook et al. (2008) and

Drovandi and Pettitt (2013), and also a susceptible-infectious-susceptible

(SIS) epidemic model, previously considered in the frequentist framework

by Pagendam and Pollett (2013). In these examples, a design is considered

to be a vector of observation times of length n, where n is the number of

observation times, constrained by resources.
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Review of Related Work

Let U(θ,x, d) ∈ [0,∞) be a measure of information one would obtain

if the experiment were conducted under design d, where θ is the model pa-

rameters and data x is observed. A sensible choice of design d, is one that

maximises the expected utility of the experiment Eθ,x[U(θ,x, d)]. When

the utility U(θ,x, d) is a function of the posterior distribution in some way

– as is the case in this paper – we call this Bayesian optimal experimental

design (for a review of Bayesian experimental design theory, see Chaloner

and Verdinelli (1995)). To evaluate this expected utility, Müller (1999) pro-

posed treating the expected utility function as an unnormalised, marginal

probability density function, by placing a joint distribution on (θ,x, d). An

MCMC scheme was then employed to sample from the design space propor-

tional to the utility function. The optimal design is then the mode of the

sampled distribution. Determining the mode of this (possibly) multivariate

distribution is complex. Drovandi and Pettitt (2013) for example, chose to

use nonparametric techniques to evaluate the mode, however, they note that

their approach may not extend well to higher dimensional designs.

The utility U(θ,x, d) should quantify the information contained in the

posterior distribution of the model parameters. One issue that arises in

evaluating the expected utility is that we require evaluation of the likelihood

in determining the posterior distribution. For partially-observed, non-linear

stochastic processes – such as the epidemic models considered in this paper –

evaluating the likelihood is often computationally intensive. Even for models

where the likelihood is not computationally intensive, we require evaluation

of the likelihood at every iteration of the MCMC scheme. Hence, timely
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evaluation of these designs quickly becomes infeasible.

Recent work has aimed to avoid the time-consuming evaluation of the ex-

act likelihood function. Cook et al. (2008) employed the MCMC algorithm

proposed by Müller (1999), coupled with a moment-closure approximation of

the likelihood, allowing a closed-form for – and thus timely evaluation of – the

approximate model likelihood. Alternatively, within the algorithm of Müller

(1999), Drovandi and Pettitt (2013) looked to avoid likelihood evaluations

by using only model simulations to evaluate the posterior distribution, and

thus the utility, using Approximate Bayesian Computation (ABC) methods

(for an introduction to ABC methods, see Marjoram et al. (2003)). Alterna-

tively, Ryan et al. (2014) utilised indirect inference methods to approximate

the posterior distribution within the algorithm of Müller (1999). In each of

these methods, the optimal design is determined as the empirical mode of the

sampled distribution. The method of Hainy et al. (2013b) also avoids likeli-

hood evaluations, suggesting evaluation of the utility at every design across

a grid on the design space. The posterior distribution is once again replaced

by the approximate posterior distribution, determined by an ABC method.

The expected utility is then approximated using Monte-Carlo integration.

The optimal design in this algorithm is then the design corresponding to the

largest expected utility.

The algorithm of Müller (1999) is the current standard search algorithm

for Bayesian optimal experimental designs, with variations to evaluating the

utility (for example, Cook et al. (2008), Drovandi and Pettitt (2013), Ryan

et al. (2014), Hainy et al. (2013a)). However, there are some drawbacks to

this methodology. The standard issues that plague a Metropolis-Hastings
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algorithm also affect the MCMC algorithm here. For example, one must

decide on a suitable proposal density for designs, which will govern the rate of

convergence to the target density and hence the amount of time the algorithm

will take to complete. There is the question of how many samples (designs)

are to be accepted in order to determine the utility surface accurately enough,

and similarly, the “curse-of-dimensionality”, which suggests the chain should

run for significantly longer as the number of design parameters increases,

in order to ensure the design space has been properly explored. Once a

suitable number of samples has indeed been accepted in the Metropolis-

Hastings algorithm across the design space, one must then determine the

mode of a (possibly) high-dimensional distribution from an approximation:

which is not a trivial problem (see Drovandi and Pettitt (2013)).

Our Algorithm

We present a new method of determining Bayesian optimal experimental

designs. Our method is similar to Hainy et al. (2013b), however we use our

simulation effort more efficiently, thus simultaneously improving on computa-

tional efficiency and accuracy. We pre-simulate a large number of realisations

Npre, corresponding to parameters sampled from the prior distribution of θ,

from the model at each design over a gridded design space. We then use

an ABC method with each of the Npre simulated datum under a particular

design as our ‘observed’ data to evaluate the utility. We take an average of

these Npre evaluations of the utility as our estimate of the expected utility for

that design. This process is repeated for every design. The optimal design is

then the design that returns the maximum expected utility. Hence, we are

using Approximate Bayesian Computation methods to evaluate the utility
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for all designs efficiently, and hence, we refer to this algorithm as ABCdE.

The small ‘d’ is deliberately chosen to represent the efficiency with respect

to small design spaces, as we will discuss later.

A particularly attractive feature of the algorithm is that, unlike an MCMC

algorithm, it does not rely on previous iterations of the algorithm. This

means that ABCdE can easily be implemented in parallel (e.g., using parfor

rather than for in MATLAB). Note, we provide MATLAB code in the Supplemen-

tary Materials to implement the ABCdE method for the Markovian death

model, as specified in this paper.

2. Methodology

In this section, we begin by providing some general background to Bayesian

optimal experimental design and then detail the current methods. Next, we

propose a new method of determining Bayesian optimal experimental de-

signs in an efficient manner, utilising Approximate Bayesian Computational

(ABC) methods, which we refer to as ABCdE.

The aim of optimal experimental design is to determine the best experi-

mental setup in order to maximise some utility of the experiment. To achieve

this aim, we specify a utility function U(θ,x, d) representing how we ‘value’

the experimental design d, chosen from the set of all designs D, where θ is

the model parameters and x is the data. We are interested in the expected

utility of using design d, over the unknown model parameters and data. That

is, we wish to evaluate,

u(d) = Eθ,x[U(θ,x, d)] =

∫
x

∫
θ

U(θ,x, d)p(x | θ, d)p(θ)dθdx, (1)

6



where p(x | θ, d) is the likelihood function of the unobserved data, under

design d, and p(θ) is the prior distribution of the model parameters. The

optimal design d∗ maximises the expected utility over the design space D,

d∗ = argmaxd∈Du(d).

The utility function we use throughout this work is the Kullback-Leibler

divergence (Kullback and Leibler (1951)) from the prior distribution to the

posterior distribution,

U(x, d) =

∫
θ

log

(
p(θ | x, d)

p(θ)

)
p(θ | x, d)dθ. (2)

The choice of utility – the Kullback-Leibler divergence – is one such ex-

ample of a utility function U(θ,x, d). However, due to the integration over

all values of θ, this utility is independent of θ; hence, we denote the utility

U(x, d).

Substituting equation (2) into equation (1), noting that equation (2) is

independent of θ, and through repeated use of the law of total probability,

we can write u(d) as,

u(d) =

∫
x

∫
θ

{∫
θ

log

(
p(θ | x, d)

p(θ)

)
p(θ | x, d)dθ

}
p(x | θ, d)p(θ)dθdx

=

∫
x

{∫
θ

log

(
p(θ | x, d)

p(θ)

)
p(θ | x, d)dθ

}∫
θ

p(θ,x | d)dθdx

=

∫
x

{∫
θ

log

(
p(θ | x, d)

p(θ)

)
p(θ | x, d)dθ

}
p(x | d)dx

=

∫
x

∫
θ

log

(
p(θ | x, d)

p(θ)

)
p(θ | x, d)p(x | d)dθdx

=

∫
x

∫
θ

log

(
p(θ | x, d)

p(θ)

)
p(x | θ, d)p(θ)dθdx. (3)

Unfortunately, analytic evaluation of the expected utility function u(d)

can rarely be achieved. Müller (1999) proposed an MCMC sampling scheme
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from the joint probability distribution, h(θ,x, d) ∝ U(θ,x, d)p(x | θ, d)p(θ).

Sampling from h(θ,x, d) in this way allows us to obtain samples from a distri-

bution that is proportional to u(d) by considering the marginal of h(d,θ,x)

in d. The approximate optimal experimental design is thus obtained as the

mode of the function proportional to u(d), as determined by the samples

from the MCMC sampling scheme. The MCMC sampling scheme defined by

Müller (1999) is outlined in Appendix A, Algorithm 3. The optimal design

is the mode of the sampled distribution. For further details and comments

on Algorithm 3, see Müller (1999).

Some utility surfaces can be relatively flat in the region of the mode. To

manage this issue, Müller (1999) proposed an alternative algorithm. This

algorithm exaggerates the mode of the distribution, thus making identifica-

tion of the optimal design easier. The proposed algorithm alters Steps 2

and 5 of Algorithm 3 to instead simulate J parameters θij, j = 1, . . . , J , and

corresponding data xij, j = 1, . . . , J . The utility at the ith iteration is then

evaluated as ui =
∏J

j=1 U(θij,x
i
j, d

i), meaning we sample from a “powered-

up” version of h(θ,x, d).

The standard version of Algorithm 3 requires one set of simulated data at

every iteration. Thus, for m iterations, we require m simulations. However,

due to the relative flatness of most utility surfaces, the powered-up version

is typically employed to exaggerate the mode of the sampled distribution.

Hence, a total of m× J simulations would be required.

If evaluation of the model likelihood, p(x | θ, d), is computationally inten-

sive, or intractable, then the MCMC sampling scheme detailed in Algorithm

3 will be computationally intensive, or impossible. This is a result of the
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utility being a function of the posterior distribution, p(θ | x, d), which must

then be evaluated in every iteration of the algorithm.

As an alternative, Cook et al. (2008) proposed a moment-closure approx-

imation to the likelihood for one of the models we consider. Details of the

moment closure approximation can be found in Krishnarajah et al. (2005).

This approximation gives a closed-form for the likelihood, allowing it to be

evaluated reasonably quickly.

Another approach to avoid likelihood evaluations was proposed simulta-

neously by Hainy et al. (2013a) and Drovandi and Pettitt (2013). We focus

on the implementation of Drovandi and Pettitt (2013). They take advan-

tage of Approximate Bayesian Computation (ABC) methods to determine

the posterior distribution of the model parameters, thus avoiding the need

to evaluate the likelihood function. ABC is a simulation based method that

avoids evaluation of the likelihood by simulating data from the model with

suitably chosen parameters (typically sampled from p(θ)), and accepting the

parameter value as a sample from the posterior distribution if the simulated

data is “close” to the “observed data”.

Algorithm 4 (Appendix A) details the ABC algorithm employed in Drovandi

and Pettitt (2013) to obtain the ABC posterior distribution, and evaluate

the utility required at Steps 2 and 5 of Algorithm 3. We define the discrep-

ancy function ρ(y,x) to be some measure of difference between the observed

data x and simulated data y, and ε to be some tolerance that controls how

“close” the observed and simulated data need to be in order to accept the

corresponding parameter. In Step 3 of Algorithm 4, p is chosen such that the

number of samples used to determine the ABC posterior is bpNprec (where b·c
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denotes the floor function). A trade-off exists between accuracy of the pos-

terior sample and the acceptance rate. For further details of ABC methods,

the reader is directed to Fearnhead and Prangle (2012).

Drovandi and Pettitt (2013) exploit the typical ABC rejection algorithm

by sampling Npre prior parameter values θ, and simulating data y for each

parameter value across all designs on a grid across the design space, prior

to running Algorithm 3. The pre-simulated data is then stored, and called

on when required to evaluate the utility at Steps 2 and 5 of Algorithm 3.

This greatly reduces the simulation effort required, at the expense of being

memory intensive. Thus, a total of Npre × |D| simulations are performed

and stored prior to starting the algorithm, and a further m× J simulations

are performed during the MCMC scheme (a total of Npre × |D| + m × J

simulations).

Hainy et al. (2013b) proposed a method of determining the Bayesian

optimum experimental design, using ABC methods without MCMC. Their

method considers every design on a grid – each time simulating a number

of ‘observed’ data, and comparing to another, independent set of ‘simulated’

data in order to determine a series of posterior distributions to evaluate the

utility at that design. Evaluation of the utility is done using Monte Carlo

integration. Their algorithm is detailed in Appendix A, Algorithm 5.

For each design di, they simulate G sets of data to be used as observed

data. To evaluate the ABC posterior distribution, a further H sets of data

are simulated for each of the G data sets. Hence, a total of |D| × G × H

simulations are performed in Algorithm 5.
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The ABCdE Algorithm

We propose a similar approach to finding the optimal design to that of

both Hainy et al. (2013b) and Drovandi and Pettitt (2013). For every design

di across a grid, we sample Npre parameters θi from p(θ), and pre-simulate

Npre corresponding data sets {xi | θi, i = 1, . . . , Npre} from p(x | θi, d) across

that grid.

Our method differs from Drovandi and Pettitt (2013) in that rather than

simulating a design, parameter value and corresponding datum at each stage

of an MCMC algorithm, we now use only this Npre × |D| matrix to evaluate

our expected utility across the gridded design space. This also differs from

the approach of Hainy et al. (2013b), as we do not simulate new data to

evaluate our posterior distribution. Instead, we use our Npre × |D| matrix

of data as both our observed and simulated data – this ensures we save on

simulation effort, whilst making sure we obtain the most information from

what we have simulated.

Similar to Drovandi and Pettitt (2013) and Hainy et al. (2013b), we use

an approximate ABC posterior distribution to evaluate our utility function.

However, we choose to use an alternative, more efficient approach to eval-

uating the posterior distribution to Algorithm 4. Namely, our approach to

evaluating the posterior distribution does not require sorting the data in or-

der to find a fixed proportion of samples. The approach taken is detailed in

Algorithm 1 (Marjoram et al. (2003)).

For each design, we use each set of the pre-simulated data as the “ob-

served datum” one-by-one, and evaluate the utility using all the Npre data

as “simulated data”. This creates a set of posterior samples having ob-
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Algorithm 1 ABC Algorithm: Fixed tolerance

Input: Observed data x, simulated data y = (y1, . . . ,yN), corresponding

parameter values θi, i = 1, . . . , N , and tolerance ε.

1: Evaluate discrepancies ρi = ρ(x,yi), creating particles {θi, ρi} for i =

1, . . . , N .

2: Using the posterior sample of parameters θi such that ρi < ε, evaluate

utility.

Output: Utility for current design, having observed x, U(d,x).

served every set of simulated data for a particular design. That is, for sim-

ulated data x1,x2, . . . ,xNpre under design d, we determine ABC posteriors

[p̂(θ | x1, d), p̂(θ | x2, d), . . . , p̂(θ | xNpre , d)] using Algorithm 1. Similar to

Drovandi and Pettitt (2013), we pre-simulate data across all designs and thus

we can pass pre-simulated data and corresponding parameter values to Algo-

rithm 1. This increases memory requirements, but saves on simulation effort,

as we do not simulate new parameter values and data each time, as would

typically be done in an ABC rejection-algorithm, or as used in Algorithm

5. We evaluate the utility using each of these Npre posterior distributions

under a particular design, and take the average of these Npre values to be

our measure of the expected utility for that design. The optimal design is

then the design that returns the largest expected utility. The full algorithm

is outlined in Algorithm 2.
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Algorithm 2 ABCdE Algorithm

1: Choose grid over the parameter space for the discrete estimate of the

utility, number of simulations Npre, and tolerance ε.

2: Sample Npre parameters θ from p(θ).

3: For each of the Npre parameters, and under every design d in the design

space D, simulate process and store XNpre×|D|(θ, d).

4: for i = 1 to |D| do

5: Consider the unique rows of data Y (θ, di) = unique(X(θ, di)).

Note: We let Ki be the number of such unique data, and nki be the

number of repetitions of the ki
th

unique data, for ki = 1, . . . , Ki.

6: for ki = 1 to Ki do

7: Pass ‘observed data’ yk
i

= [Y (θ, di)]ki , ‘simulated data’ X(θ, di),

Npre sampled parameters, and tolerance ε to Algorithm 1, and re-

turn contribution U(yk
i
, di) to the expected utility, for ki

th
unique

datum (‘observed data’) and ith design.
8: end for

9: Store u(di) = 1
Npre

∑
ki nkiU(yk

i
, di); the average utility over all pa-

rameters and data for design di.

10: end for

Output: The optimal design d∗ = argmax
d∈D

(u(d)).

A total of Npre × |D| simulations are used for the ABCdE algorithm. In

order to obtain the same level of accuracy as the ABCdE algorithm, we would

need to set G = H = Npre in the ABCD algorithm of Hainy et al. [2013b].

Hence, a total of N2
pre × |D| simulations would be required, and hence the

run time would significantly increase.
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We propose that the number of simulations Npre and ABC tolerance ε

be chosen in the same way as one would choose the number of simulations

and tolerance when using ABC for inference. That is, perform a number of

pilot studies prior to running the ABCdE algorithm in order to determine a

sensible tolerance level (see, for example, McKinley et al. (2009)).

As our method is based on the evaluation of the ABC posterior distribu-

tion, we are required to sample parameter values from the prior distribution.

Having obtained these parameter values, we are inherently left with a discrete

parameter space (as the prior distribution is discrete). Thus, to evaluate the

utility (equation (2)), we evaluate the ratio of the approximate posterior –

the accepted parameter values from the ABC scheme – to the sampled prior.

Hence, we represent the posterior distribution as a histogram of the accepted

parameter values with bins centred at the grid points of the parameter space,

and employ discrete Monte-Carlo integration to evaluate the utility.

By considering only the unique data sets at Step 5, we avoid evaluat-

ing the same posterior distributions multiple times. For any given set of

observed data (e.g., x), the parameters corresponding to the same sets of

simulated data will form the ABC posterior (e.g., all θi corresponding to yi

s.t. ρ(x, yi) < ε). Hence, we can evaluate one such posterior distribution for

each unique data set and re-use this posterior distribution nki times. This

can greatly reduce the number of calculations required, hence speeding up

the algorithm considerably. For example, consider the death model with

N = 50, and Npre = 100, 000. Evaluating the posterior distribution for only

the unique data will result in the calculation of at most 51 posterior distribu-

tions (having observed 0, 1, . . . , 50 infectious individuals) – significantly less
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calculations than if we were to evaluate the posterior distribution for each

of the Npre simulations. This approach does allow one extra sample in each

posterior distribution (the value that created the observed data). However,

we do not consider this to be an issue as we simulate a large amount of data,

and so this does not noticeably alter the resulting posterior distribution. We

have implemented our ABCdE algorithm by creating the posterior distribu-

tion for each data set having removed the parameter value that created it,

and noted there were negligible differences in the resulting optimal designs,

but a much greater computation time. Hence, we chose to proceed with the

more efficient algorithm. We note that this advantage may only hold for

discrete data. While we have not investigated this avenue, it may be possible

to discretise continuous data in a sensible way – perhaps taking advantage of

the ABC metric – in order to still obtain some improvement in computational

efficiency.

Finally, we note that in contrast to the Metropolis-Hastings approach

of Müller (1999), Cook et al. [2008], and Drovandi and Pettitt (2013), the

ABCdE algorithm is not dependent on previous iterations of the algorithm.

Hence, we have what is known as an embarrassingly parallel problem. That

is, it takes little-to-no effort to run the algorithm in parallel. With the recent

work into parallel computing, and the introduction of multi-core CPUs, and

graphical processing units (GPUs) for parallel computing, current efforts to

make such tools more widely accessible to programmers will lead to significant

improvements in the efficiency of this algorithm in the near future.
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3. Examples

To demonstrate the methodology, we consider three examples concerning

stochastic epidemic models. The first two have been considered by Cook

et al. (2008) and Drovandi and Pettitt (2013). These will allow us to directly

compare the resulting optimal designs and their ability to recover the true

model parameters when each is employed. The final model we consider is the

Markovian SIS epidemic model. We use a continuous-time Markov chain to

model each of the processes, with state space given by the possible numbers

of ‘infectious’ individuals in the system: S = {i : i = 0, 1, 2, . . . , N}. We also

note that optimal designs are dependent on the choice of prior distribution,

and thus the examples considered here are simply illustrative rather than

comprehensive. The approximate frequentist optimal designs considered by

Pagendam and Pollett (2013) are the only example of optimal designs for the

SIS epidemic model.

Markovian Death Model

Consider the Markovian death model as defined by Cook et al. (2008).

We have N individuals in a population. Independently, individuals move to

an infectious class I, at constant rate b1 (e.g., from an environmental source).

The number of individuals in the infectious and susceptible classes at time t

are given by I(t) and S(t), respectively, with S(t) = N−I(t). The transition

rate of the Markov chain is given by, qi,i+1 = b1(N − i) for i = 0, . . . , N − 1.

The prior distribution we consider is b1 ∼ logN(−0.005, 0.01), chosen such

that the mean lifetime of individuals in the population is 1, with an approx-

imate variance of 0.01 (as per Cook et al. (2008)).
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Markovian SI Epidemic Model

In the Markovian SI epidemic model, the transition rate accounts for the

contagious/transmissible nature of infectious diseases. Specifically, b1 repre-

sents the rate at which individuals are exposed via the environmental source,

as in the death model, but now we also have transmission between susceptible

and infectious individuals at rate b2. Thus, the transition rate of the Markov

chain is given by, qi,i+1 = (b1 + b2i)(N − i) for i = 0, . . . , N − 1. The rate b1

per susceptible, can be thought of as the rate of infection occurring from an

external source, and b2i the rate of infections per susceptible occurring due

to the infectious population.

Prior distributions considered are b1 ∼ logN(−3.6, 0.1024) and b2 ∼

logN(−4.5, 0.16) (again, as per Cook et al. (2008)).

Markovian SIS Epidemic Model

Consider now that there is no external source of infection, and that in-

fectious individuals can recover from the infection without immunity, and

transition back to the susceptible class. The transition rates for the Markov

chain are thus,

qi,i+1 = β
i(N − i)

N
, i = 0, . . . , N − 1,

qi,i−1 = µi, i = 1, . . . , N,

where β is the effective transmission rate of infection, and µ is the rate

of recovery per infectious individual. Due to the high level of correlation

between β and µ in the SIS epidemic model (Pagendam and Pollett (2013)),

when performing inference we consider estimation of α and ρ, where α = β−µ

and ρ = µ/β.
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We consider independent truncated-normal prior distributions for (α, ρ)

with mean (3, 0.25) and variance (0.0625, 0.0025). The parameter spaces are

truncated to α ∈ (0, 20), and ρ ∈ (0, 1). The lower limits on the parameter

space are to ensure non-negativity of the transition rates. The upper limit

for ρ is to ensure that the transmission rate β is greater than the recovery

rate µ, so that there is a non-zero probability of a major outbreak occurring

(Ludwig (1975)). The optimal observation schedule for the SIS epidemic

model has only been considered previously in a frequentist framework, by

Pagendam and Pollett (2013).

As discussed in Pagendam and Pollett (2013), the SIS epidemic model can

be categorised into two main phases: (1) an initial period of drift towards a

quasi-equilibrium (provided the initial number of infectious individuals differs

sufficiently from the expected quasi-equilibrium number of infectious individ-

uals), and (2) fluctuations about this quasi-equilibrium. The rate at which

the process drifts towards the quasi-equilibrium (phase (1)), is governed by

α, whereas the position of the quasi-equilibrium (phase (2)) is determined by

ρ. Hence, an observation during the initial drift phase will provide informa-

tion predominantly about α, while observation during the quasi-equilibrium

phase will provide information predominantly about ρ.

4. Results

The following section provides a comparison of the methods of Cook et al.

(2008), Drovandi and Pettitt (2013) and ABCdE, when applied to the death

and SI models described in Section 3. We begin by providing the optimal

observation schedules determined by each of Cook et al. (2008) and Drovandi
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and Pettitt (2013), and compare these designs to those determined using

ABCdE. A näıve design is also considered in order to demonstrate the gain

in using an optimal design determined by one of the three methods. The

näıve designs are chosen by placing equally spaced observation times across

the pre-specified design region.

We initially consider up to four observation times for the death model.

However, evaluating the optimal experimental design for four observation

times using the ABCdE method is inefficient. The ABCdE method performs

significantly slower than the existing method of Drovandi and Pettitt (2013).

However, we consider the amount of information obtained by making each of

one, two, three and four observations, and note that there is not a significant

increase in the amount of information obtained by considering four obser-

vations, rather than three. Hence, we consider only three observation times

for the remaining examples, and the analysis of results. Finally, we provide

the Bayesian optimal experimental designs for the SIS epidemic using the

ABCdE method, when one, two or three observations are permitted.

We compare the performance of the optimal designs in terms of how well

each recovers known model parameters from simulated data, observed at each

observation schedule. For the death model, we use an exact posterior distri-

bution, evaluated via a Metropolis-Hastings algorithm (each with a burn-in

of 5000, and 20000 accepted samples). The posterior distributions evaluated

for the SI and SIS models are evaluated using exact ABC (that is, ε = 0),

with 2 million and 5 million prior samples, respectively. In each case, the

data x is the observed number of infectious individuals at the corresponding

design.
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For each posterior distribution – arising under each method and each

number of observation times – we record parameter estimates (maximum a

posteriori estimates (MAP)), variances and covariances (where applicable)

of the corresponding posterior samples. The MAP is evaluated using kde

and kde2d (Botev et al. (2010)) for the one- and two-parameter models,

respectively. The variance and covariances are evaluated directly from the

posterior samples.

We note that in each case, the optimal designs from ABCdE are similar to

those previously published under the alternative methodologies, and perform

just as well as the others in terms of both the MAP and posterior variance.

The ABCdE method requires the design space to be gridded. In order

to provide solutions to a similar accuracy to those of Cook et al. (2008) and

Drovandi and Pettitt (2013), we choose to use a grid spacing of 0.1, and allow

each observation time to be in the range [0.1,6] for the death model, [1,15]

for the SI model, and [0.5,10] for the SIS model.

The utility employed by both Cook et al. (2008) and ABCdE is the

Kullback-Leibler divergence (equation (2)), whereas Drovandi and Pettitt

(2013) use the inverse of the determinant of the posterior covariance matrix.

For gridded parameter values θ1, . . . ,θl, we estimate the Kullback-Leibler

divergence between the prior distribution and posterior distribution having

observed data x under design d as:

U(x, d) =
l∑

j=1

log

(
p̂(θj | x, d)

p(θj)

)
p̂(θj | x, d), (4)

where p̂(θj | x, d) and p(θj) are the ABC posterior probability, and prior

probability associated with gridded parameter value θj, respectively. The
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Expected Kullback-Leibler divergence is then estimated by summing these

values over all simulated data x.

We employ the same discrepancy function as that of Drovandi and Pet-

titt (2013), when evaluating the ABC posterior distribution in the ABCdE

algorithm. That is, for observed data x = (x1, . . . , xn) and simulated data

y = (y1, . . . , yn), under design d – which in these examples corresponds to

observation schedule (t1, . . . , tn) – the discrepancy is,

ρ(x,y | d) =
n∑
i=1

|xi − yi|
std(yi | ti)

,

where std(yi | ti) is the standard deviation of the simulated data yi at obser-

vation time ti. Given we pre-simulate all of the data in Algorithm 2, we are

able to evaluate the standard deviation of the number of infectious individ-

uals at each observation time prior to running the algorithm (similar to the

approach of Drovandi and Pettitt (2013)).

4.1. Death Model

4.1.1. Optimal Designs & their Performance

Table 1 provides the optimal observation schedules as determined by Cook

et al. (2008), Drovandi and Pettitt (2013), ABCdE and the näıve designs,

for the death process.

For the death model, Cook et al. (2008) used the exact model likeli-

hood. This provides a ‘gold-standard’ comparison, as no approximations are

required (other than the Monte-Carlo error in the posterior of model param-

eters), and thus should be the closest indication of the true Bayesian optimal

experimental designs ability to accurately recover model parameters. The

ABCdE algorithm was run with Npre = 50, 000 simulations, and a tolerance
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ε = 0.25, 0.50 and 0.75 for 1, 2 and 3 observations, respectively. A tolerance

of 0.25 corresponds to the data matching exactly, as the largest standard

deviation at any observation time is < 4 (i.e., 1/std(yi | ti) > 0.25, ∀ti). The

increasing tolerance as the number of observations increases were chosen to

account for the change in dimension of the data.

Table 1: Comparison of the optimal observation times for the death process, from Cook

et al. (2008), Drovandi and Pettitt (2013) and our ABCdE method. |t| is the pre-

determined number of observation times, and i is the ith time.

Design Method

|t| i Cook, Gilligan & Gibson Drovandi & Pettitt ABCdE Näıve

1 1 1.70 1.60 1.30 3.15

2 1 0.90 1.15 0.80 2.2

- 2 2.40 3.05 2.80 4.1

3 1 0.70 0.75 0.40 1.725

- 2 1.50 1.90 1.30 3.15

- 3 2.90 3.90 2.60 4.575

Figure 1 demonstrates the fitness of the optimal observation schedules in

terms of recovering the true parameter value, using an exact inference method

(i.e., a Metropolis-Hastings algorithm with 5000 burn-in and 20000 accepted

samples.). We evaluate 100 realisations of the Markov process, under the

true (known) parameter value. We evaluate the posterior distributions at

each design, for |t| = {1, 2, 3}, and record the maximum a posteriori estimate

(MAP) and variance of each posterior sample.
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Figure 1a shows boxplots of the bias – the difference between our esti-

mator (MAP) and the true value b1 = 1 – and variances of the posterior

distributions recorded for each of the four methods for the death model.

There appears to be minimal bias in our estimate of b1 for each method.

Each method appears to have reasonably similar posterior variances (Figure

1b), but as one would expect, the variance decreases (on average) as the num-

ber of observations increases. The posterior variances under the näıve design

are perhaps marginally worse than the other designs. Finally, note that the

posterior variance for each method, and each number of observations, is less

than the prior variance of 0.01 (indicated by the red line in Figure 1b). This

indicates an improvement in the knowledge about b1 having conducted the

experiment.
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Figure 1: Bias (a) and variance (b) in estimates for b1 in the death model. Posterior

distributions were evaluated for 100 realisations of the death process, observed at each

methods’ respective optimal observation schedules, when one, two and three observations

were permitted (banner above each subfigure indicates number of observations). The red

line in (a) represents zero bias, and in (b) represents the prior variance.
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4.1.2. Comparison of Computation Time

Here, we provide a demonstration of the improved efficiency of ABCdE

at determining optimal Bayesian experimental designs for problems with a

low-dimensional design space. There is no mention of computational time

in Cook et al. (2008), while Drovandi and Pettitt (2013) mention that they

were able to run their code “on a high-end desktop PC in a feasible amount of

time”. We run the code supplied by Drovandi and Pettitt (2013) (as is) on the

same computer as we have run our ABCdE method, and provide computation

times as a comparison/indication of the speed-up in performance of ABCdE.

Note that the method of Drovandi and Pettitt (2013) is a MCMC algorithm

over the design space with m = 100, 000 iterations, with no thinning or

burn-in.

The ABCdE algorithm was implemented in MATLAB R2013b, with the

evaluation of the discrepancy coded in a MEX function. However, for the

purpose of comparing the run time to the method of Drovandi and Pettitt

(2013), we present the results when the discrepancy was not coded in a MEX

function. Timings are recorded from a Macbook Pro, running OSX10.10,

with a 2.7GHz Quad-core Intel Core i7 processor, Turbo Boost up to 3.7GHz,

and 16GB 1600MHz DDR3L SDRAM.

Table 2 demonstrates the massive gain in efficiency for ABCdE when

the design space is relatively small — in this case, less than four observa-

tion times. There is a large increase in run-time between three and four

observations for ABCdE. Hence, we note that the efficiency of ABCdE is

lost when the design space increases – which occurs either by considering a

wider-range of designs, or increasing the fineness of the grid over which we
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Table 2: Illustration of run-times for Drovandi & Pettitt [2013] algorithm compared to

ABCdE.

Computation Time

|t| Drovandi & Pettitt ABCdE

1 4.2 hours 0.6 secs

2 10.2 hours 85 secs

3 15.5 hours 3 hours

4 21.3 hours 190 hours

search. However, there are considerable gains in efficiency for one, two and

three observation times. Note that the majority of the increase in time can be

attributed to the combinatorial nature of the number of designs. Changing

the grid spacing will dramatically reduce the computation time.

We note, however, that we do not believe that being restricted to optimal

experimental design for small design spaces is a significant drawback in this

case. Consider implementing each of the optimal designs for one, two, three

or four observations of the Markovian death model, 100 times. For each

simulation and each design, we evaluate the utility (Kullback-Leibler diver-

gence) having utilised that experimental procedure. Figure 2 demonstrates

the distribution of the utility under each design.

As the number of observations increases, the utility appears to rapidly

converge to the maximum information that can be obtained (i.e., that which

one would obtain via continuous observation). We performed multiple com-

parisons (using the agricolae package (de Mendiburu (2014)), in the statis-
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tical software package R (R Core Team (2014)), after performing the relevant

transformation of the data), and established that there was no significant

increase in the amount of information obtained from four observations, com-

pared to three at the 5% significance level (p-value=1, with Bonferroni cor-

rection).

0.000

0.005

0.010

0.015

0.020

1 2 3 4

Number of Observation Times

K
L

D

Figure 2: Distribution of Kullback-Leibler divergence for 100 simulations of the Markovian

death model, observed at the optimal observation schedule for one, two, three and four

observations.

4.2. SI Model

4.2.1. Optimal Designs & their Performance

Table 3 provides the optimal observation schedules as determined by Cook

et al. (2008), Drovandi and Pettitt (2013), and those determined by ABCdE

as well as the näıve designs, for the SI epidemic process.
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For this model, Cook et al. (2008) use the moment-closure approximation

to the model likelihood. Hence, our comparisons of the optimal designs

contrast those for the death model, as each method is now employing an

approximation. That is, there is no ‘gold-standard’ approach with which to

directly compare our results. The ABCdE algorithm used the same tolerances

as used for the death model, but with Npre = 100, 000. More simulations were

used to account for the extra model parameter.

Table 3: Comparison of the optimal observation times for the SI epidemic process, from

Cook et al. (2008), Drovandi and Pettitt (2013) and our ABCdE method. |t| is the pre-

determined number of observation times, and i is the ith time.

Design Method

|t| i Cook, Gilligan & Gibson Drovandi & Pettitt ABCdE Näıve

1 1 9.2 12.1 8.8 8

2 1 4.1 4.6 3.8 5.6

- 2 9.6 12.1 8.8 10.3

3 1 2.9 3.7 1.5 4.5

- 2 7.2 8.7 3.6 8

- 3 10.9 15 9.3 11.5

Figure 3 demonstrates the fitness of the optimal observation schedules in

terms of recovering the true parameter value, using an exact ABC (that is,

Algorithm 1 with ε = 0) with 2 × 106 prior simulations. We evaluate 100

realisations of the Markov process, under the true (known) parameter values.

We evaluate the posterior distributions at each design, for |t| = {1, 2, 3}, and
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record the MAP, variance and covariance of the parameters (b1, b2), for each

posterior sample.

Figure 3 shows boxplots of the bias, log of variances and log of covariance

of the posterior samples recorded for each of the methods for the SI epidemic

model, where (b1, b2) = (0.02875, 0.01203). The bias is the difference between

our estimator – the MAP estimate – and the true parameter values.

There is an overall negative bias in the MAP estimates of b1, using each

method (Figure 3a). The bias in the MAP estimates of b2 appear to be

roughly centred about zero,for all methods, indicating the correct values are

recovered, on average (Figure 3b). The variances of the posterior distribution

of b1 corresponding to each method are all similar in this instance, and lower

than the prior variance (on average), for more than two observations. One

observation of the SI model appears to result in greater uncertainty about

the parameter b1. The posterior variance for b2 is less than the prior variance

for all numbers of observations, with a decreasing trend as more observations

are made. The distribution of the variance of b2 evaluated at the design

for Drovandi and Pettitt (2013) appears to be heavily negatively-skewed,

with a median quite close to the prior variance. Conversely, the distribution

of the variance of b2 evaluated at the designs of Cook et al. (2008) and

ABCdE appear to be heavily positively-skewed, however the variance is on

average considerably lower than the prior variance. The näıve design for one

observation appears to perform the best in terms of variances. The posterior

covariance is slightly negative for all methods.
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(e) Covariance of estimate of b1 and b2.

Figure 3: Bias in estimates of b1 (a) and b2 (b), variance of b1 (c) and b2 (d), and covariance

of b1 and b2 (e), of the joint posterior distribution of (b1, b2) for the SI model. Posterior

distributions were evaluated for 100 realisations of the Markovian SI process, observed at

each methods’ respective optimal observation schedules, when one, two and three observa-

tions were permitted (banner above each subfigure indicates number of observations). The

red lines represent zero bias, the prior variance, and zero covariance where appropriate.
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4.3. SIS Model

4.3.1. Optimal Designs & their Performance

Table 4 provides the optimal observation schedules for the SIS epidemic

process using ABCdE, and a näıve approach. The ABCdE algorithm uses

the same tolerances as previous, and the same number of simulations as used

for the SI model (Npre = 100, 000).

Table 4: Optimal observation times for the SIS process, from the ABCdE method and a

näıve, equidistant approach. |t| is the pre-determined number of observation times, and i

is the ith time

Method

|t| i ABCdE Näıve

1 1 7.2 5.25

2 1 6.0 3.67

- 2 9.3 6.83

3 1 2.3 2.875

- 2 6.0 5.25

- 3 10.0 7.625

Figure 4 demonstrates the ability of our optimal designs to recover the

true model parameters, using an exact ABC (that is, Algorithm 1 with ε = 0)

with 5×106 prior simulations. We simulate the SIS epidemic model 100 times

under true (know) parameter values. We compare our optimal design to a

näıve design. We evaluate the posterior distributions for each method, and

for each |t| = {1, 2, 3}, and record the MAP, variance and covariance of the

30



parameters (α, ρ), for each posterior sample, and compare these estimates to

the known parameter values.

The bias in the MAP estimates of α and ρ appear to be centred about zero

for all observation times (Figures 4a and 4b). The variances of the estimate

of α appears to be roughly the same (a slight decrease in the median) for

each observation time, with a slight increase in variability as the number

of observation times increases (Figures 4c and 4d). The variance of α are

marginally lower than the prior variance (on average), indicating the relative

difficulty of obtaining information about α when there is uncertainty in the

model parameters. The variance in the estimates of ρ decrease significantly

as the number of observations increases, for both the ABCdE design and the

näıve design. The variance is also significantly lower than the prior variance,

indicating a significant gain in information about the model parameter ρ.

5. Discussion

The results of Cook et al. (2008) for the death model are determined

using the algorithm of Müller (1999), with the exact model likelihood. This

allows a ‘gold-standard’ comparison, as there are no approximations to the

model likelihood used. We can see that the corresponding times for the death

model (Table 1) for ABCdE follow the same trend as those determined by

the other two methods. The most notable difference being that in each case

(|t| = {1, 2, 3}), the times determined by ABCdE are typically earlier than

those of the other methods. We believe this difference to be a result of the

use of ABC in conjunction with non-identifiability issues at larger times.

ABC methods rely directly on the difference in simulated data (from the
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Figure 4: Bias in estimates of α (a), and ρ (b), variance of α (c) and ρ (d), and covariance

between estimates of α and ρ (e), of the joint posterior distribution of (α, ρ) for the SIS

model. Posterior distributions were evaluated for 100 realisations of the Markovian SIS

process, observed at each methods’ respective optimal observation schedules, when one,

two and three observations were permitted (banner above each subfigure indicates number

of observations). The red lines represent zero bias, the prior variance, and zero covariance

where appropriate.
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observed data), in order to build the posterior. As such, later observation

times are not as useful, as it becomes more difficult to identify differences

in simulated data between different parameter values, for a fixed tolerance.

That is, if we observe the process too late, there is a high probability that all

individuals have already become infectious, from a wide range of parameter

values. Whilst this issue is relevant to all methods, it is more significant in

the ABC algorithm.

For the death model, each of the optimally determined designs appears

to recover the true parameter value quite well at their respective optimal ob-

servation times (Figure 1a), while the näıve design may perform marginally

worse. Similarly for the variances of the posterior distributions (Figure 1b).

It is important to note that the variance under each method is still signifi-

cantly lower than the prior variance (≈ 0.01).

The gain in efficiency when determining Bayesian optimal designs via

ABCdE comes about when the design space is low-dimensional. The size

of the design space is a function of both the number of design parameters

being considered, and also the size and resolution of the grid across which

you wish to search for the optimal design. If we consider a large design

space, our method suffers from the curse-of-dimensionality, worse than the

algorithm of Müller (1999). Hence, problems with a low-dimensional design

space (that is, a small grid and/or a coarse resolution over which to search

for the optimal design), and problems with a small number of unique data

sets to consider under each design (that is, a small population size, or sim-

ulations that do not vary significantly), will be the most suitable for the

ABCdE algorithm. In such cases, massive reductions in computation time
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will be achieved, as evidenced by the fractional running times of the ABCdE

algorithm in comparison to Drovandi and Pettitt (2013) for the death model

(Table 2). We noted however, that in this example, performing more than

three observations does not provide significantly more information.

In the examples we consider in this paper, we choose to use the same

grid coarseness as in Cook et al. (2008) and Drovandi and Pettitt (2013) to

ensure a comparable level of accuracy. We have only presented results for up

to three observation times (with the exception of the death model). More

observation times would be simple to consider; no alteration to the method

needs to be made other than considering a larger number of designs. For

the SI and SIS models (Sections 4.2 and 4.3, respectively), evaluating the

optimal design for one and two observations was computationally efficient.

However, due to the combinatorial increase in the number of designs that

must be considered as the number of observation times increases, evaluat-

ing the optimal design over a wide grid with the same grid spacing quickly

becomes inefficient to evaluate. In order to evaluate the optimal designs for

these scenarios in a more computationally efficient manner, a coarser grid

may need to be considered. We note that in determining optimal designs in

a practical setting, one must take into account the feasibility of the sampling

times, and the time-scale of the model. For example, if it is possible to only

sample at one time during a day, there is no benefit in specifying a grid so

fine we consider the possibility of observing the process at any hour of the

day.

The optimal designs for the SI epidemic process are obtained using three

different approximations to the model likelihood – the moment-closure ap-
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proximation of Cook et al. (2008), the ABC algorithm of Drovandi and Pettitt

(2013) and the ABC algorithm detailed in Algorithm 1. We note that the

resulting optimal designs obtained via ABCdE follow the same trend as those

of the other two methods. Notably, increasing from one to two observation

times appears to simply introduce a new observation early on, while keeping

the second observation time the same for all three approaches. Once again,

we note that the observation times obtained via ABCdE are all earlier than

the corresponding observation times determined by the other two methods,

for the same reasons as stated previously.

The SI model parameter b1 (Figure 3a) may be more difficult to estimate,

due to the infection events being dominated by transmission (b2), rather than

external infection (b1), once the process has reached a reasonable number of

infectious individuals. This difficulty is also apparent in the moderate im-

provement observed for the posterior variance of b1 compared to the prior

variance (Figure 3c). Each design appears to perform comparably with re-

gards to bias in estimates of the parameters b1 and b2. The average lower

posterior variance for b2 at the one-observation designs of Cook et al. (2008),

ABCdE and the näıve approach, are perhaps a result of the significantly ear-

lier observation time compared to the design of Drovandi and Pettitt (2013)

– the later observation not allowing identifiability of the parameter when all,

or close to all, individuals in the population are already infected by that time.

The trade-off between the two sources of infection to balance a ‘net infection

rate’ is apparent in the negative covariance estimate of b1 and b2.

Perhaps surprisingly, it appears as though the näıve design performs quite

well in this case. However, if we consider the observation schedules in Ta-
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ble 3, the näıve designs, which were chosen in an uninformed manner, are

reasonably similar to the optimal designs determined using each of the three

established methods. Hence, we should not expect them to perform signifi-

cantly worse in this instance.

Consider now the SIS epidemic model. Note that the utility surface for

this model is quite flat. For example, for two observation times, roughly 70%

of the considered observation schedules on our grid contained at least 95% of

the information (Expected Kullback-Leibler divergence) that was contained

in the optimal observation schedule (and 50% of designs contained at least

97.4% of the information). Hence, any observation schedules which lie on the

flat surface are going to all perform reasonably well. This is the case with

the näıve design used here. Thus, we do not expect to see a large difference

in the performance of the näıve design compared to the ABCdE design.

As noted earlier, observations during the early drift phase of the SIS epi-

demic provide information predominantly about the parameter α, while later

observations during the quasi-equilibrium predominantly provide information

about ρ. This was discussed in Pagendam and Pollett (2013), when consid-

ering frequentist optimal designs. In a frequentist framework, we specify the

model parameters that we wish to determine the optimal design for, and so

the trajectories of simulated events are reasonably similar. However, as we

have a prior distribution on the model parameters, the initial drift phase has

a wide range of trajectories it can follow, depending on which parameters

(α, ρ) were used to simulate the process. Thus, choosing an observation time

early enough to catch the drift phase of all simulated epidemics is difficult.

Hence, we note that the optimal observation times are much later than the
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corresponding frequentist designs would be, if evaluated at the mode of the

prior distributions. The difficulty in obtaining information about α is demon-

strated in the relatively slight improvement in the variance of α, compared

to the improvement seen for ρ (Figures 4c and 4d).

Besides the huge gains in efficiency for low-dimensional design problems,

ABCdE has some other attractive features. First, the use of an ABC posterior

distribution means it avoids the cumbersome likelihood evaluations. That

each design can be considered independently of the others means that ABCdE

can be implemented using parallel computing with ease (e.g., using parfor,

rather than for, in MATLAB), whereas MCMC techniques are reliant on the

previous iteration. Furthermore, there is no need to evaluate possibly high-

dimensional multivariate modes of sampling distributions; an issue that was

flagged in Drovandi and Pettitt (2013). As ABCdE does not require an

MCMC algorithm, there is no issue of convergence, or choosing a suitable

proposal density, and similarly, no need to decide a suitable point to define

the “burn-in” phase. Also, considering non-uniformly spaced times across the

design space does not require any extra effort, as there is no need to specify

a proposal distribution across the design space. Finally, by evaluating the

utility for all designs, post-hoc decisions can be made about which designs

to implement. For example, the optimal design may provide only marginally

more information than a sub-optimal design, but the sub-optimal design

could perhaps be implemented at a fraction of the cost.

Future work is to increase the efficiency of the ABCdE method for prob-

lems with large design spaces. One approach is to develop an iterative

method, whereby we define a coarse grid over which to first search for a
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viable region in which the optimal design resides. Then, a new, finer grid is

placed about this region, and the ABCdE algorithm is run to determine a

more precise optimal design. This process will be repeated until a suitable

level of accuracy is obtained. Furthermore, we are looking at implementing

this ABCdE algorithm for sequential designs, where the optimal design is

updated after each observation as new information is obtained.

Supplementary Materials

Code to implement ABCdE for the Markovian death model is supplied as

supplementary material. The algorithm is supplied as implemented in this

paper. The code to simulate the death model was supplied by Drovandi and

Pettitt (2013), and was used to ensure consistent simulation effort in the

timings.
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Appendix A. Existing Algorithms

Algorithm 3 details the MCMC algorithm for determining Bayesian op-

timal designs proposed by Muller [1999].
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Algorithm 3 MCMC with stationary distribution h(d,θ,x), Muller [1999]

Input: Number of samples m, prior distribution of model parameters p(θ),

and proposal density q(·).

1: Choose, or simulate an initial design, d1.

2: Sample θ1 ∼ p(θ), simulate x1 ∼ p(x | θ1, d1), and evaluate u1 =

U(θ1,x1, d1).

3: for i = 1 : m do

4: Generate a candidate design, d̃, from a proposal density q(d̃ | di).

5: Sample θ̃ ∼ p(θ), simulate x̃ ∼ p(x | θ̃, d̃), and evaluate ũ =

U(θ̃, x̃, d̃).

6: Calculate,

α = min

{
1,
ũ q(di | d̃)

ui q(d̃ | di)

}
.

7: Generate a ∼ U(0, 1)

8: if a < α then

9: Set (di+1, ui+1) = (d̃, ũ)

10: else

11: Set (di+1, ui+1) = (di, ui)

12: end if

13: end for

14:

Output: Sample of m designs, d.
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Algorithm 4 details the ABC algorithm for determining the approximate

Bayesian posterior distribution for a fixed (minimum) number of samples,

detailed in Drovandi & Pettitt [2013].

Algorithm 4 ABC algorithm: Fixed (minimum) number of samples

Input: Observed data x, simulated data y = (y1, . . . ,yNpre), corresponding

parameters θ, and (minimum) proportion of points to accept p.

1: Evaluate discrepancies ρi = ρ(x,yi), creating particles {θi, ρi} for i =

1, . . . , Npre.

2: Sort the particles according to the discrepancies ρi (such that ρ1 ≤ ρ2 ≤

· · · ≤ ρNpre).

3: Calculate tolerance ε = ρbpNprec.

4: Use the posterior sample of parameters θi such that ρi ≤ ε, to evaluate

the utility.

Output: Return utility evaluated for design d, with observed data x,

U(d,x).
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Algorithm 5 details the ABCD scheme proposed by Hainy et al. [2013b].

Algorithm 5 ABCD Algorithm

Input: Set of designs D, number of posterior distributions to evaluate for

each design G, number of samples generated for ABC posterior H, tol-

erance ε controlling the points accepted into posterior distribution.

1: for i = 1 to |D| do

2: for k = 1 to G do

3: Sample θk from the prior distribution p(θ).

4: Generate an observed datum xk from p(x | θ, di).

5: Sample {yj,θj, j = 1, . . . , H} from p(θ,x | di).

6: Let Jε(k) = {j : ρ(xk,yj) < ε}.

7: Evaluate the utility for the kth observed datum as,

8:

U(xk, di) =
1

|Jε(k)|
∑

j∈Jε(k)

U(θj,xk, di).

9: end for

10: Evaluate utility for design di as,

11:

u(di) =
1

G

G∑
k=1

U(xk, di).

12: end for

Output: The optimal design d∗ = argmax
i

(u(di)).
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