Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Interpolation of geophysical data using continuous global surfaces
Author: Billings, S.D.
Beatson, R.K.
Newsam, G.N.
Citation: Geophysics, 2016; 67(6):1810-1822
Publisher: Society of Exploration Geophysicists
Issue Date: 2016
ISSN: 1942-2156
Statement of
Stephen D. Billings, Rick K. Beatson and Garry N. Newsam
Abstract: A wide class of interpolation methods, including thin-plate and tension splines, kriging, sinc functions, equivalent-source, and radial basis functions, can be encompassed in a common mathematical framework involving continuous global surfaces (CGSs). The difficulty in applying these techniques to geophysical data sets has been the computational and memory requirements involved in solving the large, dense matrix equations that arise. We outline a three-step process for reducing the computational requirements: (1) replace the direct inversion techniques with iterative methods such as conjugate gradients; (2) use preconditioning to cluster the eigenvalues of the interpolation matrix and hence speed convergence; and (3) compute the matrix–vector product required at each iteration with a fast multipole or fast moment method. We apply the new methodology to a regional gravity compilation with a highly heterogeneous sampling density. The industry standard minimum-curvature algorithms and several scale-dependent CGS methods are unable to adapt to the varying data density without introducing spurious artifacts. In contrast, the thin-plate spline is scale independent and produces an excellent fit. When applied to an aeromagnetic data set with relatively uniform sampling, the thin-plate spline does not significantly improve results over a standard minimumcurvature algorithm.
Rights: © 2002 Society of Exploration Geophysicists. All rights reserved.
RMID: 0030040465
DOI: 10.1190/1.1527081
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.