Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/106892
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Search for annihilating dark matter in the Sun with 3 years of IceCube data
Author: Aartsen, M.
Ackermann, M.
Adams, J.
Aguilar, J.
Ahlers, M.
Ahrens, M.
Altmann, D.
Andeen, K.
Anderson, T.
Ansseau, I.
Anton, G.
Archinger, M.
Arguelles, C.
Auffenberg, J.
Axani, S.
Bai, X.
Barwick, S.
Baum, V.
Bay, R.
Beatty, J.
et al.
Citation: European Physical Journal C: Particles and Fields, 2017; 77(3):146-1-146-12
Publisher: Springer
Issue Date: 2017
ISSN: 1434-6044
1434-6052
Statement of
Responsibility: 
M. G. Aartsen ... G. C. Hill ... S. Robertson ... A. Wallace … B. J. Whelan ... et al. (IceCube Collaboration)
Abstract: We present results from an analysis looking for dark matter annihilation in the Sun with the IceCube neutrino telescope. Gravitationally trapped dark matter in the Sun’s core can annihilate into Standard Model particles making the Sun a source of GeV neutrinos. IceCube is able to detect neutrinos with energies >100 GeV while its low-energy infill array DeepCore extends this to >10 GeV. This analysis uses data gathered in the austral winters between May 2011 and May 2014, corresponding to 532 days of livetime when the Sun, being below the horizon, is a source of up-going neutrino events, easiest to discriminate against the dominant background of atmospheric muons. The sensitivity is a factor of two to four better than previous searches due to additional statistics and improved analysis methods involving better background rejection and reconstructions. The resultant upper limits on the spin-dependent dark matter-proton scattering cross section reach down to 1.46×10−5 pb for a dark matter particle of mass 500 GeV annihilating exclusively into τ+τ−particles. These are currently the most stringent limits on the spin-dependent dark matter-proton scattering cross section for WIMP masses above 50 GeV.
Rights: © The Author(s) 2017. This article is published with open access at Springerlink. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.
DOI: 10.1140/epjc/s10052-017-4689-9
Grant ID: ARC
Published version: http://dx.doi.org/10.1140/epjc/s10052-017-4689-9
Appears in Collections:Aurora harvest 8
Physics publications

Files in This Item:
File Description SizeFormat 
hdl_106892.pdfPublished version1.75 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.