Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Extensive phenotyping of the orofacial and dental complex in Crouzon syndrome
Author: Khominsky, A.
Yong, R.
Ranjitkar, S.
Townsend, G.
Anderson, P.
Citation: Archives of Oral Biology, 2018; 86:123-130
Publisher: Elsevier
Issue Date: 2018
ISSN: 0003-9969
Statement of
Alexander Khominsky, Robin Yong, Sarbin Ranjitkar, Grant Townsend, Peter J. Anderson
Abstract: Objectives: Fibroblast growth factor receptor 2 (FGFR2) C342Y/+ mutation is a known cause of Crouzon syndrome that is characterised by craniosynostosis and midfacial hypoplasia. Our aim was to conduct extensive phenotyping of the maxillary, mandibular and dental morphology associated with this mutation. Materials and methods: Morphometric data were obtained from 40 mice, representing two genotypes (Crouzon and wild-type) and two sexes (males and females) (n=10 in each group). Dental analysis further categorised the first molars into the two jaws (maxillary and mandibular) (n=20 in each group). Maxillary, mandibular and dental morphology was compared by analysing 23 linear landmark-based dimensions in three-dimensional micro-computed tomography reconstructions. Results: Compared with wild-type, Crouzon (FGFR2C342Y/+) maxillae were significantly shorter in maximum height, anterior and posterior lengths and middle width, but larger in posterior width (p<0.05 for height; p<0.001 for other comparisons). In the Crouzon mandible, the ascending and descending heights, effective and mandibular lengths, and intercoronoid and intercondylar widths were significantly shorter, whereas intergonial width was larger (p<0.01 for intercondylar width; p<0.001 for other comparisons). Crouzon teeth were significantly smaller mesiodistally, but larger in crown height (p<0.001 for each comparison). All Crouzon mice presented with bifid mandibular condyles and a quarter presented with expansive bone lesions in the mandibular incisor alveolus. Conclusions: Our findings of hypoplasia in all three planes in Crouzon maxillae and mandibles, together with the presence of bifid mandibular condyles and expansive bone lesions, may be relevant to maxillofacial surgery and orthodontics. Beyond skeletal effects, the FGFR2C342Y/+ mutation is now implicated in affecting tooth development. This study's skeletal phenomics data also provides baseline data against which the effect of various treatments can now be assessed.
Keywords: Craniofacial phenomics; craniosynostosis; FGFR2; maxilla; mandible; tooth
Rights: © 2017 Elsevier Ltd. All rights reserved.
RMID: 0030078760
DOI: 10.1016/j.archoralbio.2017.10.022
Appears in Collections:Dentistry publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.