Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/117657
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: The use of mid-infrared diffuse reflectance spectroscopy for acid sulfate soil analysis
Author: Soriano-Disla, J.
Janik, L.
Forrester, S.
Grocke, S.
Fitzpatrick, R.
McLaughlin, M.
Citation: Science of the Total Environment, 2019; 646:1489-1502
Publisher: Elsevier
Issue Date: 2019
ISSN: 0048-9697
1879-1026
Statement of
Responsibility: 
José M.Soriano-Disla, Leslie J.Janik, Sean T.Forrester, Sonia F.Grocke, Robert W.Fitzpatrick, Michael J.McLaughlin
Abstract: Good management of sulfide minerals and sulfuric acid in Acid Sulfate Soils (ASS) requires cost-effective rapid analytical data for their characterisation. However, the determination of properties in ASS samples using traditional laboratory techniques is expensive and time consuming. Excessive delays in analysis risks sample changes from oxidation. Mid-infrared (MIR) spectroscopy with multivariate regression offers a quicker and cheaper surrogate. This manuscript reports the prediction of some of the following key soil parameters in ASS characterisation using benchtop (Perkin Elmer) and handheld (ExoScan) diffuse reflectance MIR Fourier transform (DRIFT) spectrometers: Total Organic Carbon (TOC), Titratable Actual Acidity (TAA), Extractable Sulfate Sulfur (ESS), Reduced Inorganic Sulfur (RIS), Retained Acidity (RA), Acid Neutralising Capacity (ANC), and Lime Calculation (LC). Three sets of representative ASS soil profiles, comprising 132 samples from hyposulfidic, hypersulfidic and sulfuric materials, and covering a wide range of environments in South Australia were scanned under laboratory conditions. These were combined with reference laboratory data in partial least squares regression (PLSR) calibration models. The calibrations were validated by leave-one-out cross validation, with a further test set available for validation. Predictions with coefficient of determination (R2) > 0.75, were obtained for TOC (0.95), TAA (0.88), RIS (0.86), LC (0.76) and ANC (0.76), but models for ESS (0.66) and RA (0.41) were less satisfactory. The handheld spectrometer performed similarly to the benchtop spectrometer in terms of PLSR prediction accuracies with the potential for in-field sampling. Results thus confirmed the possibility of using MIR spectroscopy for the rapid and cost-effective characterisation of ASS.
Keywords: Acid sulfate soils; Attenuated total reflectance; Diffuse reflectance; Mid-infrared; Partial least squares regression; Pyrite
Rights: © 2018 Elsevier B.V. All rights reserved.
RMID: 0030095537
DOI: 10.1016/j.scitotenv.2018.07.383
Grant ID: http://purl.org/au-research/grants/arc/DP170104541
Appears in Collections:Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.