Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/121617
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFelix, R.en
dc.contributor.authorHarwood, B.en
dc.contributor.authorSasdelli, M.en
dc.contributor.authorCarneiro, G.en
dc.date.issued2019en
dc.identifier.citationarXiv, 2019; OnlinePublen
dc.identifier.urihttp://hdl.handle.net/2440/121617-
dc.description.abstractGeneralised zero-shot learning (GZSL) methods aim to classify previously seen and unseen visual classes by leveraging the semantic information of those classes. In the context of GZSL, semantic information is non-visual data such as a text description of both seen and unseen classes. Previous GZSL methods have utilised transformations between visual and semantic embedding spaces, as well as the learning of joint spaces that include both visual and semantic information. In either case, classification is then performed on a single learned space. We argue that each embedding space contains complementary information for the GZSL problem. By using just a visual, semantic or joint space some of this information will invariably be lost. In this paper, we demonstrate the advantages of our new GZSL method that combines classification of visual, semantic and joint spaces. Most importantly, this ensembling allows for more information from the source domains to be seen during classification. An additional contribution of our work is the application of a calibration procedure for each classifier in the ensemble. This calibration mitigates the problem of model selection when combining the classifiers. Lastly, our proposed method achieves state-of-the-art results on the CUB, AWA1 and AWA2 benchmark data sets and provides competitive performance on the SUN data set.en
dc.description.statementofresponsibilityRafael Felix, Ben Harwood, Michele Sasdelli, Gustavo Carneiroen
dc.language.isoenen
dc.publisherCornell Universityen
dc.rightsCopyright status unknownen
dc.source.urihttps://arxiv.org/abs/1908.02013v1en
dc.titleGeneralised zero-shot learning with a classifier ensemble over multi-modal embedding spacesen
dc.typeJournal articleen
dc.identifier.rmid1000002024en
dc.relation.granthttp://purl.org/au-research/grants/arc/DP180103232en
dc.relation.granthttp://purl.org/au-research/grants/arc/CE140100016en
dc.relation.granthttp://purl.org/au-research/grants/arc/FL130100102en
dc.relation.granthttp://purl.org/au-research/grants/arc/LE190100080en
dc.identifier.pubid491305-
pubs.library.collectionComputer Science publicationsen
pubs.library.teamDS10en
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidCarneiro, G. [0000-0002-5571-6220]en
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.