Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/129643
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: An aldo-keto reductase with 2-keto- L-gulonate reductase activity functions in L-tartaric acid biosynthesis from vitamin C in Vitis vinifera
Author: Jia, Y.
Burbidge, C.A.
Sweetman, C.
Schutz, E.
Soole, K.
Jenkins, C.
Hancock, R.D.
Bruning, J.B.
Ford, C.M.
Citation: Journal of Biological Chemistry, 2019; 294(44):15932-15946
Publisher: American Society for Biochemistry and Molecular Biology
Issue Date: 2019
ISSN: 0021-9258
1083-351X
Statement of
Responsibility: 
Yong Jia, Crista A. Burbidge, Crystal Sweetman, Emi Schutz,, Kathy Soole, Colin Jenkins ... et al.
Abstract: Tartaric acid has high economic value as an antioxidant and flavorant in food and wine industries. l-tartaric acid biosynthesis in wine grape (Vitis vinifera) uses ascorbic acid (vitamin C) as precursor, representing an unusual metabolic fate for ascorbic acid degradation. Reduction of the ascorbate breakdown product 2-keto-l-gulonic acid to l-idonic acid constitutes a critical step in this l-tartaric acid biosynthetic pathway. However, the underlying enzymatic mechanisms remain obscure. Here, we identified a V. vinifera aldo keto reductase, Vv2KGR, with 2-keto-l-gulonic acid reductase activity. Vv2KGR belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase superfamily and displayed the highest similarity to the hydroxyl pyruvate reductase isoform 2 in Arabidopsis thaliana. Enzymatic analyses revealed that Vv2KGR efficiently reduces 2-keto-l-gulonic acid to l-idonic acid and uses NADPH as preferred coenzyme. Moreover, Vv2KGR exhibited broad substrate specificity toward glyoxylate, pyruvate, and hydroxypyruvate, having the highest catalytic efficiency for glyoxylate. We further determined the X-ray crystal structure of Vv2KGR at 1.58 Å resolution.  Comparison of the Vv2KGR structure with those of d-isomer-specific 2-hydroxyacid dehydrogenases from animals and microorganisms revealed several unique structural features of this plant hydroxyl pyruvate reductase. Substrate structural analysis indicated that Vv2KGR uses two modes (A and B) to bind different substrates. 2-keto-l-gulonic acid displayed the lowest predicted free-energy binding to Vv2KGR among all docked substrates. Hence, we propose that Vv2KGR functions in l-tartaric acid biosynthesis. To the best of our knowledge, this is the first report of a D-isomer-specific 2-hydroxyacid dehydrogenase that reduces 2-keto-l-gulonic acid to l-idonic acid in plants.
Keywords: X-ray crystallography
Rights: © 2019 Jia et al. Published by The American Society for Biochemistry and Molecular Biology, Inc.
DOI: 10.1074/jbc.ra119.010196
Published version: http://dx.doi.org/10.1074/jbc.ra119.010196
Appears in Collections:Aurora harvest 4
Biochemistry publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.