Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/131450
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Identification and spatio-temporal expression analysis of barley genes that encode putative modular xylanolytic enzymes
Author: Betts, N.S.
Collins, H.M.
Shirley, N.J.
Cuesta-Seijo, J.A.
Schwerdt, J.G.
Phillips, R.J.
Finnie, C.
Fincher, G.B.
Dockter, C.
Skadhauge, B.
Bulone, V.
Citation: Plant Science, 2020; 308:1-12
Publisher: Elsevier
Issue Date: 2020
ISSN: 0168-9452
1873-2259
Statement of
Responsibility: 
Natalie S. Betts, Helen M. Collins, Neil J. Shirley, Jose A. Cuesta-Seijo, Julian G. Schwerdt, Renee J. Phillipsa ... et al.
Abstract: Arabinoxylans are cell wall polysaccharides whose re-modelling and degradation during plant development are mediated by several classes of xylanolytic enzymes. Here, we present the identification and new annotation of twelve putative (1,4)-β-xylanase and six β-xylosidase genes, and their spatio-temporal expression patterns during vegetative and reproductive growth of barley (Hordeum vulgare cv. Navigator). The encoded xylanase proteins are all predicted to contain a conserved carbohydrate-binding module (CBM) and a catalytic glycoside hydrolase (GH) 10 domain. Additional domains in some xylanases define three discrete phylogenetic clades: one clade contains proteins with an additional N-terminal signal sequence, while another clade contains proteins with multiple CBMs. Homology modelling revealed that all fifteen xylanases likely contain a third domain, a β-sandwich folded from two non-contiguous sequence segments that bracket the catalytic GH domain, which may explain why the full length protein is required for correct folding of the active enzyme. Similarly, predicted xylosidase proteins share a highly conserved domain structure, each with an N-terminal signal peptide, a split GH 3 domain, and a C-terminal fibronectin-like domain. Several genes appear to be ubiquitously expressed during barley growth and development, while four newly annotated xylanase and xylosidase genes are expressed at extremely high levels, which may be of broader interest for industrial applications where cell wall degradation is necessary.
Keywords: Arabinoxylan; barley; cell wall; xylanase; xylosidase
Rights: © 2020 Elsevier B.V. All rights reserved.
DOI: 10.1016/j.plantsci.2020.110792
Grant ID: http://purl.org/au-research/grants/arc/LP160100700
Published version: http://dx.doi.org/10.1016/j.plantsci.2020.110792
Appears in Collections:Aurora harvest 8
Biochemistry publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.