Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Dielectric constant engineering of organic semiconductors: effect of planarity and conjugation length
Author: Jiang, W.
Jin, H.
Babazadeh, M.
Loch, A.S.
Raynor, A.
Mallo, N.
Huang, D.M.
Jiao, X.
Tan, W.L.
McNeill, C.R.
Burn, P.L.
Shaw, P.E.
Citation: Advanced Functional Materials, 2022; 32(3):2104259-1-2104259-14
Publisher: Wiley-VCH GmbH
Issue Date: 2022
ISSN: 1616-301X
Statement of
Wei Jiang, Hui Jin, Mohammad Babazadeh, Alex S. Loch, Aaron Raynor, Neil Mallo, David M. Huang, Xuechen Jiao, Wen Liang Tan, Christopher R. McNeill, Paul L. Burn, and Paul E. Shaw
Abstract: Bulk heterojunction organic solar cells continue to show steady photoconversion efficiency improvements. However, single component organic solar cells are a particularly attractive alternative due to the relative simplicity of device manufacture. It has been proposed that organic semiconductors with a high dielectric constant (≈10) could give rise to spontaneous free charge carrier generation upon photoexcitation. In this manuscript, factors are explored that affect the dielectric constant of organic semiconductors, particularly the optical-frequency dielectric constant. The properties of monomers, dimers and trimers of two isoelectronic families of materials that have acceptor units composed of one or two dicyanovinylbenzothiadiazole moieties and one to three donor units are compared. The donor components are composed of either fluorenyl or cyclopentadithiophene moieties with the same glycol-based solubilizing groups. It is found that chromophore planarity and orientation with respect to the substrate, and film density affect the optical and electronic properties of the materials, especially the high-frequency dielectric constant. The results also indicate that delocalization of the highest occupied and lowest unoccupied molecular orbitals is a critical factor. The dimer with two dicyanovinylbenzothiadiazole moieties and two dithienocyclopentadiene units is found to have the highest optical frequency dielectric constant and overall performance.
Keywords: Dielectric constant; homojunction; molecular geometry; organic semiconductors; solar cells
Description: First published: 11 August 2021
Rights: © 2021 Wiley-VCH GmbH.
DOI: 10.1002/adfm.202104259
Grant ID:
Appears in Collections:Chemistry publications

Files in This Item:
File Description SizeFormat 
hdl_132494.pdfSubmitted version1.78 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.