Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/132646
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Grass-specific EPAD1 is essential for pollen exine patterning in rice
Author: Li, H.J.
Kim, Y.J.
Yang, L.
Liu, Z.
Zhang, J.
Shi, H.
Huang, G.
Persson, S.
Zhang, D.
Liang, W.
Citation: The Plant Cell, 2020; 32(12):3961-3977
Publisher: American Society of Plant Biologists
Issue Date: 2020
ISSN: 1040-4651
1532-298X
Statement of
Responsibility: 
HuanJun Li, Yu-Jin Kim, Liu Yang, Ze Liu, Jie Zhang, Haotian Shi ... et al.
Abstract: The highly variable and species-specific pollen surface patterns are formed by sporopollenin accumulation. The template for sporopollenin deposition and polymerization is the primexine that appears on the tetrad surface, but the mechanism(s) by which primexine guides exine patterning remain elusive. Here, we report that the Poaceae-specific EXINE PATTERN DESIGNER 1 (EPAD1), which encodes a nonspecific lipid transfer protein, is required for primexine integrity and pollen exine patterning in rice (Oryza sativa). Disruption of EPAD1 leads to abnormal exine pattern and complete male sterility, although sporopollenin biosynthesis is unaffected. EPAD1 is specifically expressed in male meiocytes, indicating that reproductive cells exert genetic control over exine patterning. EPAD1 possesses an N-terminal signal peptide and three redundant glycosylphosphatidylinositol (GPI)-anchor sites at its C terminus, segments required for its function and localization to the microspore plasma membrane. In vitro assays indicate that EPAD1 can bind phospholipids. We propose that plasma membrane lipids bound by EPAD1 may be involved in recruiting and arranging regulatory proteins in the primexine to drive correct exine deposition. Our results demonstrate that EPAD1 is a meiocyte-derived determinant that controls primexine patterning in rice, and its orthologs may play a conserved role in the formation of grass-specific exine pattern elements.
Keywords: Poaceae
Flowers
Pollen
Carotenoids
Biopolymers
Carrier Proteins
Plant Proteins
Species Specificity
Mutation
Antigens, Plant
Oryza
Rights: © 2020 ASPB.
DOI: 10.1105/tpc.20.00551
Grant ID: http://purl.org/au-research/grants/arc/DP190101941
http://purl.org/au-research/grants/arc/FT160100218
Published version: http://dx.doi.org/10.1105/tpc.20.00551
Appears in Collections:Biochemistry publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.