Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/134587
Type: Thesis
Title: Scalable Life-long Visual Place Recognition
Author: Doan, Anh-Dzung
Issue Date: 2022
School/Discipline: School of Computer Science
Abstract: Visual place recognition (VPR) is the task of using visual inputs to determine if mobile robots are visiting a previously observed place or exploring new regions. To perform convincingly, a practical VPR algorithm must be robust against appearance changes, due to not only short-term (e.g., weather, lighting) and long-term (e.g., seasons, vegetation growth, etc) environmental variations, but also "less cyclical" changes (construction and roadworks, updating of signage, facades and billboards, etc). Such appearance changes invariably occur in real life. It motivates our thesis to fill this research gap. To this end, we firstly investigate probabilistic frameworks to effectively exploit the temporal information from visual data which is in the form of videos. Inspired by Bayes Filter, we propose two VPR methods that respectively perform filtering on discrete and continuous domains, where the temporal information is efficiently used to improve VPR accuracy under appearance changes. Given the fact that the appearance of operational environments uninterruptedly and indefinitely changes, a promising solution for VPR to deal with appearance changes is to continuously accumulate images to incorporate new changes into the internal environmental representation. This demands a VPR technique that is scalable on an ever growing dataset. To this end, inspired by Hidden Markov Models (HMM), we develop novel VPR techniques, that can be efficiently updated and compressed, such that the recognition of new queries can exploit all available data (including recent changes) without suffering from the linear growth in time and space complexity. Another approach to address the scalability issue in VPR is map summarization, which only keeps informative 3D points in a topometric map, according to predefined constraints. In this thesis, we define timestamp as another constraint. Accordingly, we formulate a repeatability predictor (RP) as a regressor, that predicts the repeatability of an interest point as a function of time. We show that the RP can be used to significantly alleviate the degeneration of VPR accuracy from map summarization. The contributions of this thesis not only fill the gap within current state of VPR research; but, more importantly, also enable a wide range of applications, such as, self-driving cars, autonomous robots, augmented reality, and so on.
Advisor: Chin, Tat-Jun
Latif, Yasir
Dissertation Note: Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 2022
Keywords: Visual place recognition
localization
navigation
robotics
computer vision
machine learning
Provenance: This electronic version is made publicly available by the University of Adelaide in accordance with its open access policy for student theses. Copyright in this thesis remains with the author. This thesis may incorporate third party material which has been used by the author pursuant to Fair Dealing exceptions. If you are the owner of any included third party copyright material you wish to be removed from this electronic version, please complete the take down form located at: http://www.adelaide.edu.au/legals
Appears in Collections:Research Theses

Files in This Item:
File Description SizeFormat 
Doan2022_PhD.pdf26.2 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.