Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/135306
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tran, D.H. | - |
dc.contributor.author | Sheng, Q.Z. | - |
dc.contributor.author | Zhang, W.E. | - |
dc.contributor.author | Hamad, S.A. | - |
dc.contributor.author | Khoa, N.L.D. | - |
dc.contributor.author | Tran, N.H. | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Computer, 2022; 55(4):30-39 | - |
dc.identifier.issn | 0018-9162 | - |
dc.identifier.issn | 1558-0814 | - |
dc.identifier.uri | https://hdl.handle.net/2440/135306 | - |
dc.description.abstract | Unlike traditional recommender systems, the conversational recommender system (CRS) models a user’s preferences through interactive dialogue conversations. Recently, deep learning approaches have been applied to CRSs, producing fruitful results. We discuss the development of deep CRSs and future research directions. | - |
dc.description.statementofresponsibility | Dai Hoang Tran and Quan Z. Sheng, Wei Emma Zhang, Salma Abdalla Hamad, Nguyen Lu Dang Khoa, Nguyen H. Tran | - |
dc.language.iso | en | - |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | - |
dc.rights | Copyright © 2022, IEEE | - |
dc.title | Deep Conversational Recommender Systems: Challenges and Opportunities | - |
dc.type | Journal article | - |
dc.identifier.doi | 10.1109/MC.2020.3045426 | - |
dc.relation.grant | http://purl.org/au-research/grants/arc/DP200102298 | - |
pubs.publication-status | Published | - |
dc.identifier.orcid | Zhang, W.E. [0000-0002-0406-5974] | - |
Appears in Collections: | Computer Science publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.