Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/135621
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Type: | Journal article |
Title: | Slit-Robo signalling establishes a Sphingosine-1-phosphate gradient to polarise fin mesenchyme |
Author: | Mahabaleshwar, H. Asharani, P.V. Loo, T.Y. Koh, S.Y. Pitman, M.R. Kwok, S. Ma, J. Hu, B. Lin, F. Li Lok, X. Pitson, S.M. Saunders, T.E. Carney, T.J. |
Citation: | EMBO Reports, 2022; 23(8):e54464-1-e54464-14 |
Publisher: | EMBO |
Issue Date: | 2022 |
ISSN: | 1469-221X 1469-3178 |
Statement of Responsibility: | Harsha Mahabaleshwar, PV Asharani, Tricia Yi Loo, Shze Yung Koh, Melissa R Pitman, Samuel Kwok, Jiajia Ma, Bo Hu, Fang Lin, Xue Li Lok, Stuart M Pitson, Timothy E Saunders, Tom J Carney |
Abstract: | Immigration of mesenchymal cells into the growing fin and limb buds drives distal outgrowth, with subsequent tensile forces between these cells essential for fin and limb morphogenesis. Morphogens derived from the apical domain of the fin, orientate limb mesenchyme cell polarity, migration, division and adhesion. The zebrafish mutant stomp displays defects in fin morphogenesis including blister formation and associated loss of orientation and adhesion of immigrating fin mesenchyme cells. Positional cloning of stomp identifies a mutation in the gene encoding the axon guidance ligand, Slit3. We provide evidence that Slit ligands derived from immigrating mesenchyme act via Robo receptors at the apical ectodermal ridge (AER) to promote release of sphingosine-1-phosphate (S1P). S1P subsequently diffuses back to the mesenchyme to promote their polarisation, orientation, positioning and adhesion to the interstitial matrix of the fin fold. We thus demonstrate the coordination of the Slit-Robo and S1P signalling pathways in fin fold morphogenesis. Our work introduces a mechanism regulating the orientation, positioning and adhesion of its constituent cells. |
Keywords: | fin mesenchyme Robo Slit sphingosine-1-phosphate |
Description: | Published online 9 June 2022 |
Rights: | © 2022 The Authors |
DOI: | 10.15252/embr.202154464 |
Grant ID: | http://purl.org/au-research/grants/nhmrc/1042589 http://purl.org/au-research/grants/nhmrc/1156693 |
Appears in Collections: | Biochemistry publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.