Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/136807
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Validating an Adjustment to the Intermittent Critical Power Model for Elite Cyclists-Modeling W' Balance During World Cup Team Pursuit Performances
Author: Bartram, J.C.
Thewlis, D.
Martin, D.T.
Norton, K.I.
Citation: International Journal of Sports Physiology and Performance, 2022; 17(2):170-175
Publisher: Human Kinetics
Issue Date: 2022
ISSN: 1555-0265
1555-0273
Statement of
Responsibility: 
Jason C. Bartram, Dominic Thewlis, David T. Martin, and Kevin I. Norton
Abstract: PURPOSE: Modeling intermittent work capacity is an exciting development to the critical power model with many possible applications across elite sport. With the Skiba 2 model validated using subelite participants, an adjustment to the model's recovery rate has been proposed for use in elite cyclists (Bartram adjustment). The team pursuit provides an intermittent supramaximal event with which to validate the modeling of W' in this population. METHODS: Team pursuit data of 6 elite cyclists competing for Australia at a Track World Cup were solved for end W' values using both the Skiba 2 model and the Bartram adjustment. Each model's success was evaluated by its ability to approximate end W' values of 0 kJ, as well as a count of races modeled to within a predetermined error threshold of ±1.840 kJ. RESULTS: On average, using the Skiba 2 model found end W' values different from zero (P = .007; mean ± 95% confidence limit, -2.7 ± 2.0 kJ), with 3 out of 8 cases ending within the predetermined error threshold. Using the Bartram adjustment on average resulted in end W' values that were not different from zero (P = .626; mean ± 95% confidence limit, 0.5 ± 2.5 kJ), with 4 out of 8 cases falling within the predetermined error threshold. CONCLUSIONS: On average, the Bartram adjustment was an improvement to modeling intermittent work capacity in elite cyclists, with the Skiba 2 model underestimating the rate of W' recovery. In the specific context of modeling team pursuit races, all models were too variable for effective use; hence, individual recovery rates should be explored beyond population-specific rates.
Keywords: Skiba
anaerobic capacity
intermittent work capacity
maximal capacity
cycling
DOI: 10.1123/ijspp.2020-0444
Published version: http://dx.doi.org/10.1123/ijspp.2020-0444
Appears in Collections:Medical Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.