Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/140482
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Enhanced Photocatalytic and Photovoltaic Performance Arising from Unconventionally Low Donor-Y6 Ratios
Author: Dolan, A.
Pan, X.
Griffith, M.J.
Sharma, A.
de la Perrelle, J.M.
Baran, D.
Metha, G.F.
Huang, D.M.
Kee, T.W.
Andersson, M.R.
Citation: Advanced Materials, 2024; 36(15):2309672-1-2309672-17
Publisher: Wiley
Issue Date: 2024
ISSN: 0935-9648
0935-9648
Statement of
Responsibility: 
Andrew Dolan, Xun Pan, Matthew J. Griffith, Anirudh Sharma, Jessica M. de la Perrelle, Derya Baran, Gregory F. Metha, David M. Huang, Tak W. Kee, and Mats R. Andersson
Abstract: Development of both organic photovoltaics (OPVs) and organic photocatalysts has focused on utilizing the bulk heterojunction (BHJ). The BHJ promotes charge separation and enhances the carrier lifetime, but may give rise to increased charge traps, hindering performance. Here, high photocatalytic and photovoltaic performance is displayed by electron donor-acceptor (D-A) nanoparticles (NPs) and films, using the non-fullerene acceptor Y6 and polymer donor PIDT-T8BT. In contrast to conventional D-A systems, the charge generation in PIDT-T8BT:Y6 NPs is mainly driven by Y6, allowing a high performance even at a low D:A mass ratio of 1:50. The high performance at the low mass ratio is attributed to the amorphous behaviour of PIDT-T8BT. Low ratios have generally been thought to yield lower efficiency than the more conventional ∼1:1 ratio. However, the OPVs exhibit peak performance at a D:A ratio of 1:5. Similarly the NPs used for photocatalytic hydrogen evolution show peak performance at the 1:6.7 D:A ratio. Interestingly, for the PIDT-T8BT:Y6 system, as the polymer proportion increases, we observe a reduced photocatalytic and photovoltaic performance. The unconventional D:A ratios provide lower recombination losses and increased charge-carrier lifetime with undisrupted ambipolar charge transport in bulk Y6, enabling better performance than conventional ratios. This work reports novel light-harvesting materials in which performance is reduced due to unfavourable morphology as D:A ratios move towards conventional ratios of 1:1.2-1:1. This article is protected by copyright. All rights reserved.
Keywords: Homojunction OPVs
Low-donor Content
Organic Semiconductors
Photocatalysis
Photovoltaics
Quantum Mechanics
Renewable Energy
Description: OnlinePubl
Rights: © 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
DOI: 10.1002/adma.202309672
Grant ID: http://purl.org/au-research/grants/arc/DP160103797
http://purl.org/au-research/grants/arc/DP220102900
http://purl.org/au-research/grants/arc/LE0989747
http://purl.org/au-research/grants/arc/LE200100051
http://purl.org/au-research/grants/arc/DP230102705
http://purl.org/au-research/grants/arc/FT230100154
Published version: http://dx.doi.org/10.1002/adma.202309672
Appears in Collections:Research Outputs

Files in This Item:
File Description SizeFormat 
hdl_140482.pdfPublished version3.94 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.