Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/14583
Citations
Scopus Web of ScienceĀ® Altmetric
?
?
Type: Journal article
Title: In vitro covalent binding of Nafenopin-CoA to human liver proteins
Author: Sallustio, B.
Nunthasomboon, S.
Drogemuller, C.
Knights, K.
Citation: Toxicology and Applied Pharmacology, 2000; 163(2):176-182
Publisher: Academic Press Inc
Issue Date: 2000
ISSN: 0041-008X
1096-0333
Statement of
Responsibility: 
Sallustio, Benedetta C. ; Nunthasomboon, Sirimas ; Drogemuller, Christopher J. ; Knights, Kathleen M.
Abstract: Endogenous fatty acyl-CoAs play an important role in the acylation of proteins. A number of xenobiotic carboxylic acids are able to mimic fatty acids, forming CoA conjugates and acting as substrates in pathways of lipid metabolism. In this study nafenopin, a substrate for human hepatic fatty acid-CoA ligases, was chosen as a model compound to study xenobiotic acylation of human liver proteins. (3)H-nafenopin (+/- unlabeled palmitate) or (14)C-palmitate (+/- unlabeled nafenopin) were incubated for up to 120 min at 37 degrees C with ATP, CoA, and homogenate protein (1 mg/ml) from four individual human livers. Nafenopin covalently bound to proteins was detectable in all human livers and increased with time. Nafenopin adduct formation was directly proportional to nafenopin-CoA formation (r = 0.985, p < 0.05). Attachment of nafenopin to proteins involved both thioester and amide linkages with 76 and 24% of adducts formed with proteins > 100 and 50-100 kDa, respectively. Protein acylation by palmitate was also demonstrated. Palmitate significantly inhibited nafenopin-CoA formation by 29% but had no effect on nafenopin-CoA-mediated protein acylation. In contrast, nafenopin significantly inhibited protein palmitoylation by palmitoyl-CoA. This is the first study to demonstrate a direct relationship between xenobiotic-CoA formation, acylation of human liver proteins, and inhibition of endogenous palmitoylation. The ability of xenobiotics to acylate tissue proteins may have important biological consequences including perturbation of endogenous regulation of protein localization and function.
Keywords: Liver; Humans; Amides; Nafenopin; Sulfhydryl Compounds; Acyl Coenzyme A; Coenzyme A Ligases; Palmitates; Proteins; Saccharomyces cerevisiae Proteins; Repressor Proteins; Xenobiotics; Acylation; Adolescent; Adult; Middle Aged; Female; Male
RMID: 0001000682
DOI: 10.1006/taap.1999.8868
Appears in Collections:Pharmacology publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.