Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/17885
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Direct visualization of membrane leakage induced by the antibiotic peptides: Maculatin, citropin, and aurein
Author: Ambroggio, E.
Separovic, F.
Bowie, J.
Fidelio, G.
Bagatolli, L.
Citation: Biophysical Journal, 2005; 89(3):1874-1881
Publisher: Biophysical Society
Issue Date: 2005
ISSN: 0006-3495
1542-0086
Statement of
Responsibility: 
Ernesto E. Ambroggio, Frances Separovic, John H. Bowie, Gerardo D. Fidelio and Luis A. Bagatolli
Abstract: Membrane lysis caused by antibiotic peptides is often rationalized by means of two different models: the so-called carpet model and the pore-forming model. We report here on the lytic activity of antibiotic peptides from Australian tree frogs, Maculatin 1.1, Citropin 1.1, and Aurein 1.2, on POPC or POPC/POPG model membranes. Leakage experiments using fluorescence spectroscopy indicated that the peptide/lipid mol ratio necessary to induce 50% of probe leakage was smaller for Maculatin compared with Aurein or Citropin, regardless of lipid membrane composition. To gain further insight into the lytic mechanism of these peptides we performed single vesicle experiments using confocal fluorescence microscopy. In these experiments, the time course of leakage for different molecular weight (water soluble) fluorescent markers incorporated inside of single giant unilamellar vesicles is observed after peptide exposure. We conclude that Maculatin and its related peptides demonstrate a pore-forming mechanism (differential leakage of small fluorescent probe compared with high molecular weight markers). Conversely, Citropin and Aurein provoke a total membrane destabilization with vesicle burst without sequential probe leakage, an effect that can be assigned to a carpeting mechanism of lytic action. Additionally, to study the relevance of the proline residue on the membrane-action properties of Maculatin, the same experimental approach was used for Maculatin-Ala and Maculatin-Gly (Pro-15 was replaced by Ala or Gly, respectively). Although a similar peptide/lipid mol ratio was necessary to induce 50% of leakage for POPC membranes, the lytic activity of Maculatin-Ala and Maculatin-Gly decreased in POPC/POPG (1:1 mol) membranes compared with that observed for the naturally occurring Maculatin sequence. As observed for Maculatin, the lytic action of Maculatin-Ala and Maculatin-Gly is in keeping with the formation of pore-like structures at the membrane independently of lipid composition.
Keywords: Membranes
Cell Membrane
Animals
Ranidae
Fluoresceins
Lipids
Membrane Lipids
Lipid Bilayers
Phosphatidylcholines
Phosphatidylglycerols
Peptides
Antimicrobial Cationic Peptides
Amphibian Proteins
Anti-Bacterial Agents
Microscopy, Confocal
Microscopy, Fluorescence
Mutagenesis
Time Factors
Description: Copyright © 2005 The Biophysical Society The document attached has been archived with permission from the publisher.
DOI: 10.1529/biophysj.105.066589
Published version: http://www.biophysj.org/cgi/reprint/89/3/1874
Appears in Collections:Aurora harvest 2
Physics publications

Files in This Item:
File Description SizeFormat 
hdl_17883.pdf167.96 kBPublisher's PDF View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.