Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/229
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJacobs, A.-
dc.contributor.authorLipka, V.-
dc.contributor.authorBurton, R.-
dc.contributor.authorPanstruga, R.-
dc.contributor.authorStrizhov, N.-
dc.contributor.authorSchulze-Lefert, P.-
dc.contributor.authorFincher, G.-
dc.date.issued2003-
dc.identifier.citationThe Plant Cell, 2003; 15(11):2503-2513-
dc.identifier.issn1040-4651-
dc.identifier.issn1532-298X-
dc.identifier.urihttp://hdl.handle.net/2440/229-
dc.description.abstractArabidopsis was transformed with double-stranded RNA interference (dsRNAi) constructs designed to silence three putative callose synthase genes: GLUCAN SYNTHASE–LIKE5 (GSL5), GSL6, and GSL11. Both wound callose and papillary callose were absent in lines transformed with GSL5 dsRNAi and in a corresponding sequence-indexed GSL5 T-DNA insertion line but were unaffected in GSL6 and GSL11 dsRNAi lines. These data provide strong genetic evidence that the GSL genes of higher plants encode proteins that are essential for callose formation. Deposition of callosic plugs, or papillae, at sites of fungal penetration is a widely recognized early response of host plants to microbial attack and has been implicated in impeding entry of the fungus. Depletion of callose from papillae in gsl5 plants marginally enhanced the penetration of the grass powdery mildew fungus Blumeria graminis on the nonhost Arabidopsis. Paradoxically, the absence of callose in papillae or haustorial complexes correlated with the effective growth cessation of several normally virulent powdery mildew species and of Peronospora parasitica.-
dc.description.statementofresponsibilityAndrew K. Jacobs, Volker Lipka, Rachel A. Burton, Ralph Panstruga, Nicolai Strizhov, Paul Schulze-Lefert and Geoffrey B. Fincher-
dc.language.isoen-
dc.publisherAmer Soc Plant Physiologists-
dc.source.urihttp://dx.doi.org/10.1105/tpc.016097-
dc.subjectFungi-
dc.subjectPlants, Genetically Modified-
dc.subjectArabidopsis-
dc.subjectPlant Leaves-
dc.subjectGlucans-
dc.subjectGlucosyltransferases-
dc.subjectSchizosaccharomyces pombe Proteins-
dc.subjectMembrane Proteins-
dc.subjectDNA, Bacterial-
dc.subjectRNA, Double-Stranded-
dc.subjectSignal Transduction-
dc.subjectPlant Diseases-
dc.subjectRNA Interference-
dc.subjectMutation-
dc.subjectStress, Mechanical-
dc.subjectImmunity, Innate-
dc.subjectFungal Structures-
dc.titleAn Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation-
dc.typeJournal article-
dc.identifier.doi10.1105/tpc.016097-
pubs.publication-statusPublished-
dc.identifier.orcidBurton, R. [0000-0002-0638-4709]-
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 6

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.