Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Conference paper
Title: A Bayesian Estimation of Building Shape Using MCMC
Author: Dick, A.
Dyer, F.
Cipolla, R.
Citation: Computer Vision - ECCV 2002: 7th European Conference on Computer Vision; 2002/ A. Heyden, G. Sparr, M. Nielsen, P. Johansen (eds.): pp. 852−866
Publisher: Springer-Verlag
Publisher Place: London, UK
Issue Date: 2002
Series/Report no.: Lecture notes in computer science ; 2351
ISBN: 3540437444
ISSN: 0302-9743
Conference Name: European Conference on Computer Vision (7th : 2002 : Copehagen, Denmark)
Statement of
A.R. Dick, P.H.S. Torr and R. Cipolla
Abstract: This Paper investigates the use of an implicit Prior in Bayesian model-based 3D reconstruction of architecture from image sequences. In our previous work architecture is represented as a combination of basic primitives such as windows and doors etc, each with their own Prior. The contribution of this work is to provide a global Prior for the spatial organization of the basic primitives. However, it is difficult to explicitly formulate the Prior on spatial organization. Instead we define an implicit representation that favours global regularities prevalent in architecture (e.g. windows lie in rows etc.). Specifying exact Parameter values for this Prior is problematic at best, however it is demonstrated that for a broad range of values the Prior provides reasonable results. The validity of the Prior is tested visually by generating synthetic buildings as draws from the Prior simulated using MCMC. The result is a fully Bayesian method for structure from motion in the domain of architecture
Description: The original publication can be found at
RMID: 0020064249
DOI: 10.1007/3-540-47967-8_57
Published version:
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.