Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/3452
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Compact Kähler surfaces with trivial canonical bundle
Other Titles: Compact Kahler surfaces with trivial canonical bundle
Author: Buchdahl, N.
Citation: Annals of Global Analysis and Geometry, 2003; 23(2):189-204
Publisher: Kluwer Academic Publ
Issue Date: 2003
ISSN: 0232-704X
Statement of
Responsibility: 
Nicholas Buchdahl
Abstract: The classical conjectures of Weil on K3 surfaces – that the set of such surfaces is connected; that a version of the Torelli theorem holds; that each such surface is Kähler; and that the period map is surjective – are reconsidered in the light of a generalisation of the Nakai-Moishezon criterion, and short proofs of all the conjectures are given. Most of the proofs apply equally or with minor variation to complex 2-tori, the only other compact Kähler surfaces with trivial canonical bundle.
Keywords: Kähler surface; K3 surface; complex 2-torus; period map; Torelli theorem
Description: The original publication can be found at www.springerlink.com
Rights: © 2003 Kluwer Academic Publishers
RMID: 0020030805
DOI: 10.1023/A:1022557004624
Published version: http://www.springerlink.com/content/h2517445047r421r/
Appears in Collections:Pure Mathematics publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.