Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/35883
Citations
Scopus Web of Science® Altmetric
?
?
Type: Conference paper
Title: Minimum number of generations required for convergence of genetic algorithms
Author: Gibbs, M.
Maier, H.
Dandy, G.
Nixon, J.
Citation: IEEE Congress on Evolutionary Computation, 16-21 July, 2006:pp.565-572
Publisher: IEEE
Publisher Place: CDROM
Issue Date: 2006
Series/Report no.: IEEE Congress on Evolutionary Computation
ISBN: 0780394879
9780780394872
Conference Name: IEEE Congress on Evolutionary Computation (2006 : Vancouver, B.C.)
Abstract: Genetic Algorithms (GAs) have been applied to a wide range of optimization problems, however a great deal of time and effort is required to calibrate the GA parameters to ensure that the best possible solutions are located. It is proposed that there exists a minimum number of GA generations before the members of a population will converge to a solution for a given optimization problem. This property would be useful in the calibration of a GA, as if there is a constant number of generations to solve the problem, the best population size can be determined using the desired number of function evaluations divided by the minimum number of generations. The hypothesis is tested for two versions of a test function; a commonly used separable test function, and a version of the function with epistatic interactions introduced between decision variables. Different problem sizes and convergence criteria are also considered. Two different relationships are identified. For the case where epistatic interactions are introduced into the test function the hypothesis is validated, as a constant number of generations before convergence is identified, and this increases with the size of the problem. However, for the case with no interactions between decision variables, the smallest population size produced the best results, regardless of problem size or convergence criteria.
Description: Copyright © 2006 IEEE
RMID: 0020062795
DOI: 10.1109/CEC.2006.1688360
Description (link): http://www.okstate.edu/elec-engr/faculty/yen/wcci/WCCI-Web_ProgramList_M.html
Appears in Collections:Civil and Environmental Engineering publications
Environment Institute publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.