Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/55400
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Absorption of sugars in the Egyptian fruit bat (Rousettus aegyptiacus): a paradox explained
Author: Tracy, C.
McWhorter, T.
Korine, C.
Wojciechowski, M.
Pinshow, B.
Karasov, W.
Citation: Journal of Experimental Biology, 2007; 210(10):1726-1734
Publisher: Company of Biologists Ltd
Issue Date: 2007
ISSN: 0022-0949
1477-9145
Statement of
Responsibility: 
Christopher R. Tracy, Todd J. McWhorter, Carmi Korine, Michal S. Wojciechowski, Berry Pinshow and William H. Karasov
Abstract: Two decades ago D. J. Keegan reported results on Egyptian fruit bats (Rousettus aegyptiacus, Megachiroptera) that were strangely at odds with the prevailing understanding of how glucose is absorbed in the mammalian intestine. Keegan's in vitro tests for glucose transport against a concentration gradient and with phloridzin inhibition in fruit bat intestine were all negative, although he used several different tissue preparations and had positive control results with laboratory rats. Because glucose absorption by fruit bats is nonetheless efficient, Keegan postulated that the rapid glucose absorption from the fruit bat intestine is not through the enterocytes, but must occur via spaces between the cells. Thus, we hypothesized that absorption of water-soluble compounds that are not actively transported would be extensive in these bats, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. We did not presume from Keegan's studies that there is no Na+-coupled, mediated sugar transport in these bats, and our study was not designed to rule it out, but rather to quantify the level of possible non-mediated absorption. Using a standard pharmacokinetic technique, we fed, or injected intraperitonealy, the metabolically inert carbohydrates L-rhamnose (molecular mass=164 Da) and cellobiose (molecular mass=342 Da), which are absorbed by paracellular uptake, and 3-O-methyl-D-glucose (3OMD-glucose), a D-glucose analog that is absorbed via both mediated (active) and paracellular uptake. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose, 62±4%; cellobiose, 22±4%) and was significantly higher in bats than has been reported for rats and other mammals. In addition, fractional absorption of 3OMD-glucose was high (91±2%). We estimated that Egyptian fruit bats rely on passive, paracellular absorption for the majority of their glucose absorption (at least 55% of 3OMD-glucose absorption), much more than in non-flying mammals.
Keywords: paracellular nutrient uptake; carbohydrate absorption; Chiroptera; Egyptian fruit bat; Rousettus aegyptiacus
RMID: 0020093841
DOI: 10.1242/jeb.02766
Appears in Collections:Agriculture, Food and Wine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.