Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/55416
Citations | ||
Scopus | Web of ScienceĀ® | Altmetric |
---|---|---|
?
|
?
|
Type: | Journal article |
Title: | Adaptive object tracking based on an effective appearance filter |
Author: | Wang, H. Suter, D. Schindler, K. Shen, C. |
Citation: | IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007; 29(9):1661-1667 |
Publisher: | IEEE Computer Soc |
Issue Date: | 2007 |
ISSN: | 0162-8828 1939-3539 |
Statement of Responsibility: | Hanzi Wang, David Suter, Konrad Schindler and Chunhua Shen |
Abstract: | We propose a similarity measure based on a Spatial-color Mixture of Gaussians (SMOG) appearance model for particle filters. This improves on the popular similarity measure based on color histograms because it considers not only the colors in a region but also the spatial layout of the colors. Hence, the SMOG-based similarity measure is more discriminative. To efficiently compute the parameters for SMOG, we propose a new technique with which the computational time is greatly reduced. We also extend our method by integrating multiple cues to increase the reliability and robustness. Experiments show that our method can successfully track objects in many difficult situations. |
Keywords: | Image Interpretation, Computer-Assisted Image Enhancement Colorimetry Models, Statistical Sensitivity and Specificity Normal Distribution Reproducibility of Results Algorithms Motion Color Artificial Intelligence Computer Simulation Pattern Recognition, Automated |
DOI: | 10.1109/TPAMI.2007.1112 |
Published version: | http://dx.doi.org/10.1109/tpami.2007.1112 |
Appears in Collections: | Aurora harvest 5 Computer Science publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.