Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/55478
Citations
Scopus Web of ScienceĀ® Altmetric
?
?
Type: Journal article
Title: MDPE: A very robust estimator for model fitting and range image segmentation
Author: Wang, H.
Suter, D.
Citation: International Journal of Computer Vision, 2004; 59(2):139-166
Publisher: Kluwer Academic Publ
Issue Date: 2004
ISSN: 0920-5691
1573-1405
Statement of
Responsibility: 
Hanzi Wang and David Suter
Abstract: In this paper, we propose a novel and highly robust estimator, called MDPE1 (Maximum Density Power Estimator). This estimator applies nonparametric density estimation and density gradient estimation techniques in parametric estimation (ldquomodel fittingrdquo). MDPE optimizes an objective function that measures more than just the size of the residuals. Both the density distribution of data points in residual space and the size of the residual corresponding to the local maximum of the density distribution, are considered as important characteristics in our objective function. MDPE can tolerate more than 85% outliers. Compared with several other recently proposed similar estimators, MDPE has a higher robustness to outliers and less error variance. We also present a new range image segmentation algorithm, based on a modified version of the MDPE (Quick-MDPE), and its performance is compared to several other segmentation methods. Segmentation requires more than a simple minded application of an estimator, no matter how good that estimator is: our segmentation algorithm overcomes several difficulties faced with applying a statistical estimator to this task.
Keywords: robust estimation; breakdown point; model fitting; range image segmentation; least median of squares; residual consensus; adaptive least kth order squares; mean shift; random sample consensus; Hough transform
RMID: 0020093976
DOI: 10.1023/B:VISI.0000022287.61260.b0
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.