Please use this identifier to cite or link to this item:
https://hdl.handle.net/2440/56769
Citations | ||
Scopus | Web of Science® | Altmetric |
---|---|---|
?
|
?
|
Type: | Journal article |
Title: | Wavespeed in reaction–diffusion systems, with applications to chemotaxis and population pressure |
Author: | Balasuriya, S. Gottwald, G. |
Citation: | Journal of Mathematical Biology, 2010; 61(3):377-399 |
Publisher: | Springer-Verlag |
Issue Date: | 2010 |
ISSN: | 0303-6812 1432-1416 |
Statement of Responsibility: | Sanjeeva Balasuriya, Georg A. Gottwald |
Abstract: | We present a method based on the Melnikov function used in dynamical systems theory to determine the wavespeed of travelling waves in perturbed reaction-diffusion systems. We study reaction-diffusion systems which are subject to weak nontrivial perturbations in the reaction kinetics, in the diffusion coefficient, or with weak active advection. We find explicit formulae for the wavespeed and illustrate our theory with two examples; one in which chemotaxis gives rise to nonlinear advection and a second example in which a positive population pressure results in both a density-dependent diffusion coefficient and a nonlinear advection. Based on our theoretical results we suggest an experiment to distinguish between chemotactic and population pressure in bacterial colonies. |
Keywords: | Bacteria Population Density Chemotaxis Models, Biological |
Rights: | © Springer-Verlag 2009 |
DOI: | 10.1007/s00285-009-0305-4 |
Appears in Collections: | Aurora harvest Mathematical Sciences publications |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.