Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/57385
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Influence of orthogonal overload on human vertebral trabecular bone mechanical properties
Author: Badiei, A.
Bottema, M.
Fazzalari, N.
Citation: Journal of Bone and Mineral Research, 2007; 22(11):1690-1699
Publisher: Amer Soc Bone & Mineral Res
Issue Date: 2007
ISSN: 0884-0431
1523-4681
Statement of
Responsibility: 
Arash Badiei, Murk J. Bottema and Nicola L. Fazzalari
Abstract: UNLABELLED: The aim of this study was to investigate the effects of overload in orthogonal directions on longitudinal and transverse mechanical integrity in human vertebral trabecular bone. Results suggest that the trabecular structure has properties that act to minimize the decrease of apparent toughness transverse to the primary loading direction. INTRODUCTION: The maintenance of mechanical integrity and function of trabecular structure after overload remains largely unexplored. Whereas a number of studies have focused on addressing the question by testing the principal anatomical loading direction, the mechanical anisotropy has been overlooked. The aim of this study was to investigate the effects of overload in orthogonal directions on longitudinal and transverse mechanical integrity in human vertebral trabecular bone. MATERIALS AND METHODS: T(12)/L(1) vertebral bodies from five cases and L(4)/L(5) vertebral bodies from seven cases were retrieved at autopsy. A cube of trabecular bone was cut from the centrum of each vertebral body and imaged by microCT. Cubes from each T(12)/L(1) and L(4)/L(5) pairs were assigned to either superoinferior (SI) or anteroposterior (AP) mechanical testing groups. All samples were mechanically tested to 10% apparent strain by uniaxial compression according to their SI or AP allocation. To elucidate the extent to which overload in orthogonal directions affects the mechanical integrity of the trabecular structure, samples were retested (after initial uniaxial compression) in their orthogonal direction. After mechanical testing in each direction, apparent ultimate failure stresses (UFS), apparent elastic moduli (E), and apparent toughness moduli (u) were computed. RESULTS: Significant differences in mechanical properties were found between SI and AP directions in both first and second overload tests. Mechanical anisotropy far exceeded differences resulting from overloading the structure in the orthogonal direction. No significant differences were found in mean UFS and mean u for the first or second overload tests. A significant decrease of 35% was identified in mean E for cubes overloaded in the SI direction and then overloaded in the AP direction. CONCLUSIONS: Observed differences in the mechanics of trabecular structure after overload suggests that the trabecular structure has properties that act to minimize loss of apparent toughness, perhaps through energy dissipating sacrificial structures transverse to the primary loading direction.
Keywords: bone mechanics; bone quality; trabecular bone architecture; bone strength; vertebral bone
Description: Copyright © 2007 American Society for Bone and Mineral Research
RMID: 0020073611
DOI: 10.1359/JBMR.070706
Appears in Collections:Pathology publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.