Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Modelling peptide nanotubes for artificial ion channels
Author: Rahmat, F.
Thamwattana, N.
Cox, B.
Citation: Nanotechnology, 2011; 22(44):445707-1-445707-8
Publisher: IOP Publishing Ltd
Issue Date: 2011
ISSN: 0957-4484
Statement of
Fainida Rahmat, Ngamta Thamwattana and Barry J Cox
Abstract: We investigate the van der Waals interaction of D,L-Ala cyclopeptide nanotubes and various ions, ion–water clusters and C60 fullerenes, using the Lennard-Jones potential and a continuum approach which assumes that the atoms are smeared over the peptide nanotube providing an average atomic density. Our results predict that Li + , Na + , Rb + and Cl − ions and ion–water clusters are accepted into peptide nanotubes of 8.5 Å internal diameter whereas the C60 molecule is rejected. The model indicates that the C60 molecule is accepted into peptide nanotubes of 13 Å internal diameter, suggesting that the interaction energy depends on the size of the molecule and the internal diameter of the peptide nanotube. This result may be useful for the design of peptide nanotubes for drug delivery applications. Further, we also find that the ions prefer a position inside the peptide ring where the energy is minimum. In contrast, Li + –water clusters prefer to be in the space between each peptide ring.
Keywords: Fullerenes
Nanotubes, Peptide
Ion Channels
Models, Molecular
Rights: © 2011 IOP Publishing Ltd
DOI: 10.1088/0957-4484/22/44/445707
Grant ID: ARC
Published version:
Appears in Collections:Aurora harvest
Mathematical Sciences publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.