Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/69652
Citations
Scopus Web of Science® Altmetric
?
?
Type: Conference paper
Title: An adaptive approach for solving dynamic scheduling with time-varying number of tasks - Part II
Author: Abello, M.
Bui, L.
Michalewicz, Z.
Citation: Proceedings of the 2011 IEEE Congress of Evolutionary Computation (CEC 2011), held in New Orleans, LA, USA, 5-8 June, 2011: pp.1711-1718
Publisher: IEEE
Publisher Place: USA
Issue Date: 2011
Series/Report no.: IEEE Congress on Evolutionary Computation
ISBN: 9781424478354
Conference Name: IEEE Congress of Evolutionary Computation (2011 : New Orleans, USA)
Statement of
Responsibility: 
Manuel Blanco Abello, Lam Thu Bui and Zbignew Michalewicz
Abstract: Changes in environment are common in daily activities and can introduce new problems. To be adaptive to these changes, new solutions are to be found every time change occur. This two-part paper employs a technique called Centroid Based Adaptation (CBA) which utilize centroid of non-dominated solutions found through Multi-objective Optimization with Evolutionary Algorithm (MOEA) from previous environmental change. This centroid will become part of MOEA's initial population to find the solutions for the current change. The first part of our paper deals mainly on the extension of CBA, called Mapping Task IDs for CBA (McBA), to solve problems resulting from time-varying number of tasks. This second part will show the versatility of McBA over a portfolio of algorithms with respect to the degree of changes in environment. This demonstration was accomplished by finding a model relating the degree of changes to the performance of McBA using Nonlinear Principal Component Analysis. From this model, the degree of change at which McBA's performance becomes unacceptable can be found. Results showed that McBA, and its variant called Random McBA, can withstand larger environmental changes than those of other algorithms in the portfolio.
Rights: ©2011 IEEE
RMID: 0020115391
DOI: 10.1109/CEC.2011.5949821
Description (link): http://cec2011.org/
Published version: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5936494
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.