Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/72445
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Major effect of retinal short-chain dehydrogenase reductase (RDHE2) on bovine fat colour
Author: Tian, R.
Cullen, N.
Morris, C.
Fisher, P.
Pitchford, W.
Bottema, C.
Citation: Mammalian Genome, 2012; 23(5-6):378-386
Publisher: Springer
Issue Date: 2012
ISSN: 0938-8990
1432-1777
Statement of
Responsibility: 
Rugang Tian, Neil G. Cullen, Chris A. Morris, Paul J. Fisher, Wayne S. Pitchford and Cynthia D. K. Bottema
Abstract: Beef with yellow fat is considered undesirable by consumers in most European and Asian markets. β-Carotene is the major carotenoid deposited in the adipose tissue and milk fat of cattle (Bos taurus), which can result in the yellowness. The effects of retinal short-chain dehydrogenase reductase (RDHE2) and β, β-carotene 9',10- dioxygenase (BCO2) were considered jointly as major candidate genes for causing the yellow fat colour, based on their genomic locations in the fat colour quantitative trait loci (QTL) and their roles in the metabolism of β-carotene. In a secondary pathway, BCO2 cleaves β-carotene into retinoic acid, the most potent form of vitamin A. RDHE2 converts trans-retinol to trans-retinal, a less active form of vitamin A. We evaluated the effects of two amino acid variants of the RDHE2 gene (V6A and V33A) along with a mutation in the BCO2 gene that results in a stop codon (W80X) in seven cattle populations. The RDHE2 V6A genotype affected several fat colour traits but the size of the effect varied in the populations studied. The genotype effect of the RDHE2 V33A variant was observed only in New Zealand samples of unknown breed. In general, the individual effects of RDHE2 V6A and V33A SNPs genotypes were greater in the random New Zealand samples than in samples from pedigreed Jersey-Limousin backcross progeny, accounting for 8–17 % of the variance in one population. Epistasis between the BCO2 W80X and RDHE2 variants was observed, and in some populations this explained more of the variation than the effects of the individual RDHE2 variants.
Keywords: Adipose Tissue; Animals; Cattle; beta Carotene; Aldehyde Oxidoreductases; Dioxygenases; Base Sequence; Polymorphism, Single Nucleotide; Quantitative Trait Loci; Molecular Sequence Data; Female; Male
Rights: © Springer Science+Business Media, LLC 2012
RMID: 0020119295
DOI: 10.1007/s00335-012-9396-0
Appears in Collections:Agriculture, Food and Wine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.