Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Type: Journal article
Title: Supervised learning of semantic classes for image annotation and retrieval
Author: Carneiro, G.
Chan, A.
Moreno, P.
Vasconcelos, N.
Citation: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007; 29(3):394-410
Publisher: IEEE Computer Soc
Issue Date: 2007
ISSN: 0162-8828
Statement of
Gustavo Carneiro, Antoni B. Chan, Pedro J. Moreno and Nuno Vasconcelos
Abstract: A probabilistic formulation for semantic image annotation and retrieval is proposed. Annotation and retrieval are posed as classification problems where each class is defined as the group of database images labeled with a common semantic label. It is shown that, by establishing this one-to-one correspondence between semantic labels and semantic classes, a minimum probability of error annotation and retrieval are feasible with algorithms that are 1) conceptually simple, 2) computationally efficient, and 3) do not require prior semantic segmentation of training images. In particular, images are represented as bags of localized feature vectors, a mixture density estimated for each image, and the mixtures associated with all images annotated with a common semantic label pooled into a density estimate for the corresponding semantic class. This pooling is justified by a multiple instance learning argument and performed efficiently with a hierarchical extension of expectation-maximization. The benefits of the supervised formulation over the more complex, and currently popular, joint modeling of semantic label and visual feature distributions are illustrated through theoretical arguments and extensive experiments. The supervised formulation is shown to achieve higher accuracy than various previously published methods at a fraction of their computational cost. Finally, the proposed method is shown to be fairly robust to parameter tuning.
Keywords: Content-based image retrieval; semantic image annotation and retrieval; weakly supervised learning; multiple instance learning; Gaussian mixtures; expectation-maximization; image segmentation; object recognition
Rights: © 2007 IEEE
RMID: 0020114288
DOI: 10.1109/TPAMI.2007.61
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.