Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/75510
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, W.-
dc.contributor.authorRoberts, A.-
dc.contributor.authorDuan, J.-
dc.date.issued2012-
dc.identifier.citationJournal of Differential Equations, 2012; 253(12):3501-3522-
dc.identifier.issn0022-0396-
dc.identifier.issn1090-2732-
dc.identifier.urihttp://hdl.handle.net/2440/75510-
dc.description.abstractA large deviation principle is derived for a class of stochastic reaction-diffusion partial differential equations with slow-fast components. The result shows that the rate function is exactly that of the averaged equation plus the fluctuating deviation which is a stochastic partial differential equation with small Gaussian perturbation. This result also confirms the effectiveness of the approximation of the averaged equation plus the fluctuating deviation to the slow-fast stochastic partial differential equations. © 2012 Elsevier Inc.-
dc.description.statementofresponsibilityWei Wang, A.J. Roberts, Jinqiao Duan-
dc.language.isoen-
dc.publisherAcademic Press Inc-
dc.rightsCopyright © 2012 Elsevier Inc. All rights reserved.-
dc.source.urihttp://dx.doi.org/10.1016/j.jde.2012.08.041-
dc.subjectSlow–fast reaction–diffusion SPDEs-
dc.subjectLarge deviation principle-
dc.subjectFreidlin and Wentzell estimates-
dc.subjectAveraged equation-
dc.titleLarge deviations and approximations for slow-fast stochastic reaction-diffusion equations-
dc.typeJournal article-
dc.identifier.doi10.1016/j.jde.2012.08.041-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP0774311-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP0988738-
pubs.publication-statusPublished-
dc.identifier.orcidRoberts, A. [0000-0001-8930-1552]-
Appears in Collections:Aurora harvest
Mathematical Sciences publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.