Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/79900
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: By what mechanism does ondansetron inhibit colonic migrating motor complexes: does it require endogenous serotonin in the gut wall?
Author: Spencer, N.
Nicholas, S.
Sia, T.
Staikopoulos, V.
Kyloh, M.
Spencer, E.
Citation: Neurogastroenterology and Motility, 2013; 25(8):677-685
Publisher: Blackwell Publishing Ltd
Issue Date: 2013
ISSN: 1350-1925
1365-2982
Statement of
Responsibility: 
N. J. Spencer, S. J. Nicholas, T. C. Sia, V. Staikopoulos, M. Kyloh & E. A. Beckett
Abstract: BACKGROUND 5-HT3 antagonists, such as ondansetron (Zofran), retard colonic transit and provide effective relief of symptoms of chronic diarrhea and diarrhea-predominant irritable bowel syndrome (IBS), but the mechanism by which ondansetron retards transit is unclear. What is clear is that the frequency of colonic migrating motor complexes (CMMCs) is reduced by ondansetron, which could account for reduced transit. Our aim was to determine whether an acute depletion of 5-HT from enteric neurons would inhibit spontaneous CMMCs; and determine whether the sensitivity of ondansetron to reduce CMMC frequency would change in a 5-HT-depleted preparation. METHODS Mice were injected with reserpine, 24 h prior to euthanasia to deplete neuronally synthesized 5-HT. Mechanical recordings were made from proximal and mid-distal regions of isolated whole mouse colon. Immunohistochemical staining for 5-HT was used to detect neuronal 5-HT. KEY RESULTS Reserpine depleted all detectable 5-HT from enteric nerves. In whole colons, with mucosa and submucosal plexus removed, the frequency and amplitude of spontaneous CMMCs was not different between groups treated with or without reserpine. Surprisingly, in mucosa and submucosal plexus-free preparations, ondansetron was equally or significantly more effective at inhibiting CMMC frequency compared with control preparations (containing 5-HT). Reserpine pretreatment had no effect on the sensitivity of ondansetron to inhibit CMMCs. CONCLUSIONS & INFERENCES Endogenous 5-HT in enteric neurons (or the mucosa) is not required for the spontaneous generation or propagation of CMMCs. Furthermore, the primary mechanism by which ondansetron inhibits CMMC frequency is not mediated via the mucosa, submucosal plexus or 5-HT in myenteric neurons.
Keywords: Intestinal Mucosa; Colon; Myenteric Plexus; Submucous Plexus; Animals; Mice, Inbred C57BL; Guinea Pigs; Mice; Serotonin; Ondansetron; Serotonin Antagonists; Myoelectric Complex, Migrating
Rights: © 2013 John Wiley & Sons Ltd
RMID: 0020130768
DOI: 10.1111/nmo.12136
Appears in Collections:Physiology publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.