Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/82525
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family
Author: Yang, S.
Gronlund, M.
Jakobsen, I.
Grotemeye, M.
Rentsch, D.
Miyao, A.
Hirochika, H.
Kumar, C.
Sundaresan, V.
Salamin, N.
Catausan, S.
Mattes, N.
Heuer, S.
Paszkowski, U.
Citation: The Plant Cell, 2012; 24(10):4236-4251
Publisher: Amer Soc Plant Physiologists
Issue Date: 2012
ISSN: 1040-4651
1532-298X
Statement of
Responsibility: 
Shu-Yi Yang, Mette Grønlund, Iver Jakobsen, Marianne Suter Grotemeyer, Doris Rentsch, Akio Miyao, Hirohiko Hirochika, Chellian Santhosh Kumar, Venkatesan Sundaresan, Nicolas Salamin, Sheryl Catausan, Nicolas Mattes, Sigrid Heuer, and Uta Paszkowski
Abstract: Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.
Keywords: Mycorrhizae
Phosphate Transport Proteins
Plant Proteins
Phylogeny
Symbiosis
Amino Acid Sequence
Mutation
Multigene Family
Open Reading Frames
Molecular Sequence Data
Oryza
Rights: © 2012 American Society of Plant Biologists
DOI: 10.1105/tpc.112.104901
Published version: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517247/
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 4

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.