Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/83879
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, G.en
dc.contributor.authorShen, C.en
dc.contributor.authorSuter, D.en
dc.contributor.authorVan Den Hengel, A.en
dc.date.issued2013en
dc.identifier.citationProceedings, 2013 IEEE International Conference on Computer Vision, ICCV 2013: pp.2552-2559en
dc.identifier.isbn9781479928392en
dc.identifier.issn1550-5499en
dc.identifier.urihttp://hdl.handle.net/2440/83879-
dc.description.abstractMost existing approaches to hashing apply a single form of hash function, and an optimization process which is typically deeply coupled to this specific form. This tight coupling restricts the flexibility of the method to respond to the data, and can result in complex optimization problems that are difficult to solve. Here we propose a flexible yet simple framework that is able to accommodate different types of loss functions and hash functions. This framework allows a number of existing approaches to hashing to be placed in context, and simplifies the development of new problem-specific hashing methods. Our framework decomposes the hashing learning problem into two steps: hash bit learning and hash function learning based on the learned bits. The first step can typically be formulated as binary quadratic problems, and the second step can be accomplished by training standard binary classifiers. Both problems have been extensively studied in the literature. Our extensive experiments demonstrate that the proposed framework is effective, flexible and outperforms the state-of-the-art.en
dc.description.statementofresponsibilityGuosheng Lin, Chunhua Shen, David Suter, Anton van den Hengelen
dc.language.isoenen
dc.publisherIEEE Computer Societyen
dc.relation.ispartofseriesIEEE International Conference on Computer Visionen
dc.rights© 2013 IEEEen
dc.titleA general two-step approach to learning-based hashingen
dc.typeConference paperen
dc.identifier.rmid0020137399en
dc.contributor.conferenceIEEE International Conference on Computer Vision (14th : 2013 : Sydney, Australia)en
dc.identifier.doi10.1109/ICCV.2013.317en
dc.publisher.placeUSAen
dc.identifier.pubid14854-
pubs.library.collectionComputer Science publicationsen
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidShen, C. [0000-0002-8648-8718]en
dc.identifier.orcidSuter, D. [0000-0001-6306-3023]en
dc.identifier.orcidVan Den Hengel, A. [0000-0003-3027-8364]en
Appears in Collections:Computer Science publications

Files in This Item:
File Description SizeFormat 
RA_hdl_83879.pdfRestricted Access321.49 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.