Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/84198
Citations
Scopus Web of Science® Altmetric
?
?
Type: Conference paper
Title: Minimum Bayes error features for visual recognition by sequential feature selection and extraction
Author: Carneiro, G.
Vasconcelos, N.
Citation: Proceedings of the Second Canadian Conference on Computer and Robot Vision (CRV 05), 2005 / pp.253-260
Publisher: IEEE
Publisher Place: USA
Issue Date: 2005
ISBN: 0769523196
9780769523194
Conference Name: Canadian Conference on Computer and Robot Vision (2nd : 2005 : Victoria, British Columbia)
Statement of
Responsibility: 
Gustavo Carneiro, Nuno Vasconcelos
Abstract: The extraction of optimal features, in a classification sense, is still quite challenging in the context of large-scale classification problems (such as visual recognition), involving a large number of classes and significant amounts of training data per class. We present an optimal, in the minimum Bayes error sense, algorithm for feature design that combines the most appealing properties of the two strategies that are currently dominant: feature extraction (FE) and feature selection (FS). The new algorithm proceeds by interleaving pairs of FS and FE steps, which amount to a sequential search for the most discriminant directions in a collection of two dimensional subspaces. It combines the fast convergence rate of FS with the ability of FE to uncover optimal features that are not part of the original basis functions, leading to solutions that are better than those achievable by either FE or FS alone, in a small number of iterations. Because the basic iteration has very low complexity, the new algorithm is scalable in the number of classes of the recognition problem, a property that is currently only available for feature extraction methods that are either sub-optimal or optimal under restrictive assumptions that do not hold for generic recognition. Experimental results show significant improvements over these methods, either through much greater robustness to local minima or by achieving significantly faster convergence.
Rights: Copyright © 2005 by The Institute of Electrical and Electronics Engineers, Inc.
RMID: 0020114251
DOI: 10.1109/CRV.2005.53
Appears in Collections:Computer Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.