Please use this identifier to cite or link to this item:
Scopus Web of Science® Altmetric
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWithayachumnankul, W.en
dc.contributor.authorShah, C.en
dc.contributor.authorFumeaux, C.en
dc.contributor.authorUng, B.en
dc.contributor.authorPadilla, W.en
dc.contributor.authorBhaskaran, M.en
dc.contributor.authorAbbott, D.en
dc.contributor.authorSriram, S.en
dc.identifier.citationPhotonics, 2014; 1(7):625-630en
dc.description.abstractMetamaterial perfect absorbers have garnered significant interest with applications in sensing, imaging, and energy harnessing. Of particular interest are terahertz absorbers to overcome the weak terahertz response of natural materials. Here, we propose lossy plasmonic resonance in silicon-based annular microcavities for perfect terahertz absorption. This mechanism is in stark contrast to earlier demonstrations of conventional terahertz perfect absorbers that invoke Lorentzian electric and magnetic resonances. A fundamental cavity mode coupled to coaxial surface plasmon polaritons is responsible for the predicted exceptional absorption of −58 dB with a 90% absorption bandwidth of 30%. The performance is in agreement with experimental validation and consistent with critical coupling and resonance conditions. This specific cavity design possesses great thermal isolation and minimal electromagnetic coupling between unit cells. These unique features exclusive to the plasmonic cavity introduce a promising avenue for terahertz imaging with enhanced contrast, resolution, and sensitivity.en
dc.description.statementofresponsibilityWithawat Withayachumnankul, Charan Manish Shah, Christophe Fumeaux, Benjamin S-Y Ung, Willie J. Padilla, Madhu Bhaskaran, Derek Abbott and Sharath Sriramen
dc.publisherACS Publicationsen
dc.rights© 2014 American Chemical Societyen
dc.subjectMetamaterial; plasmonics; perfect absorber; cavity mode; THz-TDS; terahertz; multiphysics simulationen
dc.titlePlasmonic resonance toward terahertz perfect absorbersen
dc.typeJournal articleen
pubs.library.collectionElectrical and Electronic Engineering publicationsen
dc.identifier.orcidFumeaux, C. [0000-0001-6831-7213]en
dc.identifier.orcidAbbott, D. [0000-0002-0945-2674]en
Appears in Collections:Electrical and Electronic Engineering publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.