Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/85824
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: An overhaul of the species-area approach for predicting biodiversity loss: incorporating matrix and edge effects
Author: Koh, L.
Lee, T.
Sodhi, N.
Ghazoul, J.
Citation: Journal of Applied Ecology, 2010; 47(5):1063-1070
Publisher: Blackwell Scientific Publications
Issue Date: 2010
ISSN: 0021-8901
1365-2664
Statement of
Responsibility: 
Lian Pin Koh, Tien Ming Lee, Navjot S. Sodhi and Jaboury Ghazoul
Abstract: 1.  Species–area (SA) models have often been used to predict biodiversity loss resulting from habitat loss. This application of SA models hinges on two fundamental assumptions: the resultant landscape matrix is inhospitable to the taxa of interest; and edge effects do not factor into extinction risks. Despite growing consensus that these assumptions are unrealistic, the SA approach continues to be used in assessments of biodiversity decline and conservation planning. 2.  We propose an overhaul of the SA approach by accounting for taxon-specific responses to landscape-specific matrix quality and deleterious effects of habitat edges. We pitted nine variants of an improved SA model (calibrated for edge and/or matrix) against two variants of the conventional model (calibrated with island or continental z values) to predict species extinction and endangerment in 15 tropical biodiversity hotspots. 3.  The matrix-calibrated SA model received the highest Akaike’s Information Criterion weight (birds: 66·8%; mammals: 63·3%), which reflects the weight of evidence in support of it being the most parsimonious model given the set of candidate models and data considered. Additionally, the matrix-calibrated (MC) model produced species extinction predictions that were the most accurate and least biased. 4.  The second best model (for both birds and mammals) was one that simultaneously corrected for matrix and edge effects. 5.  The conventional SA model (particularly when calibrated with an island z value) performed worse than the matrix-calibrated and/or edge-corrected models. 6. Synthesis and applications. Our results suggest that accounting for the landscape matrix per se is a sufficient and significant improvement to the SA approach in terms of assessing species extinction risks from land-use change. More importantly, given that the MC model was also the most parsimonious model (in that it requires only one additional model parameter than the conventional SA model), it could prove to be a cost-effective heuristic tool for conservation scientists and decision makers to accurately evaluate extinction risks resulting from land-use decisions. We argue that, henceforth, the MC model, which takes account of both the extent of deforestation and quality of the resultant matrix, should replace the conventional SA model for predicting biodiversity loss.
Keywords: Agriculture; biodiversity crisis; countryside biogeography; equilibrium theory; forest regeneration; power model; reconciliation ecology; succession; win–win ecology
Description: Article first published online: 13 AUG 2010
Rights: © 2010 The Authors
DOI: 10.1111/j.1365-2664.2010.01860.x
Published version: http://dx.doi.org/10.1111/j.1365-2664.2010.01860.x
Appears in Collections:Aurora harvest 2
Ecology, Evolution and Landscape Science publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.