Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/86812
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Genetic architecture of gene expression in ovine skeletal muscle
Author: Kogelman, L.
Byrne, K.
Vuocolo, T.
Watson-Haigh, N.
Kadarmideen, H.
Kijas, J.
Oddy, H.
Gardner, G.
Gondro, C.
Tellam, R.
Citation: BMC Genomics, 2011; 12(1):607-1-607-17
Publisher: BioMed Central
Issue Date: 2011
ISSN: 1471-2164
1471-2164
Statement of
Responsibility: 
Lisette JA Kogelman, Keren Byrne, Tony Vuocolo, Nathan S Watson-Haigh, Haja N Kadarmideen, James W Kijas, Hutton V Oddy, Graham E Gardner, Cedric Gondro, and Ross L Tellam
Abstract: Background: In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle. Results: The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial function and transcriptional regulation. Conclusions: This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and translation control, and protein catabolism mediated by regulated proteolysis is likely to be the primary determinant of the genetic merit for the muscling trait in this sheep population. There is also evidence that high genetic merit for muscling is associated with a fibre type shift toward fast glycolytic fibres. This study provides insight into mechanisms, presumably subject to strong artificial selection, that underpin enhanced muscling in sheep populations.
Keywords: Muscle, Skeletal
Animals
Sheep
Oligonucleotide Array Sequence Analysis
Gene Expression Profiling
Rights: © 2011 Kogelman et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI: 10.1186/1471-2164-12-607
Published version: http://dx.doi.org/10.1186/1471-2164-12-607
Appears in Collections:Agriculture, Food and Wine publications
Aurora harvest 7

Files in This Item:
File Description SizeFormat 
hdl_86812.pdfPublished version955.99 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.