Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/86967
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBurnell, O.en
dc.contributor.authorRussell, B.en
dc.contributor.authorIrving, A.en
dc.contributor.authorConnell, S.en
dc.date.issued2014en
dc.identifier.citationOecologia, 2014; 176(3):871-882en
dc.identifier.issn0029-8549en
dc.identifier.issn1432-1939en
dc.identifier.urihttp://hdl.handle.net/2440/86967-
dc.description.abstractIncreased availability of dissolved CO2 in the ocean can enhance the productivity and growth of marine plants such as seagrasses and algae, but realised benefits may be contingent on additional conditions (e.g. light) that modify biotic interactions between these plant groups. The combined effects of future CO2 and differing light on the growth of seagrass and their algal epiphytes were tested by maintaining juvenile seagrasses Amphibolis antarctica under three different CO2 concentrations representing ambient, moderate future and high future forecasts (i.e. 390, 650 vs. 900 µl l(-1)) and two light levels representing low and high PAR (i.e. 43 vs. 167 µmol m(-2) s(-1)). Aboveground and belowground biomass, leaf growth, epiphyte cover, tissue chemistry and photosynthetic parameters of seagrasses were measured. At low light, there was a neutral to positive effect of elevated CO2 on seagrass biomass and growth; at high light, this effect of CO2 switched toward negative, as growth and biomass decreased at the highest CO2 level. These opposing responses to CO2 appeared to be closely linked to the overgrowth of seagrass by filamentous algal epiphytes when high light and CO2 were combined. Importantly, all seagrass plants maintained positive leaf growth throughout the experiment, indicating that growth was inhibited by some experimental conditions but not arrested entirely. Therefore, while greater light or elevated CO2 provided direct physiological benefits for seagrasses, such benefits were likely negated by overgrowth of epiphytic algae when greater light and CO2 were combined. This result demonstrates how indirect ecological effects from epiphytes can modify independent physiological predictions for seagrass associated with global change.en
dc.description.statementofresponsibilityOwen W. Burnell, Bayden D. Russell, Andrew D. Irving, Sean D. Connellen
dc.language.isoenen
dc.publisherSpringeren
dc.rights© Springer-Verlag Berlin Heidelberg 2014en
dc.subjectAmphibolis antarctica; Biotic interactions; Filamentous epiphytes; Global change; Photosynthesisen
dc.titleSeagrass response to CO₂ contingent on epiphytic algae: indirect effects can overwhelm direct effectsen
dc.title.alternativeSeagrass response to CO(2) contingent on epiphytic algae: indirect effects can overwhelm direct effectsen
dc.typeJournal articleen
dc.identifier.rmid0030013118en
dc.identifier.doi10.1007/s00442-014-3054-zen
dc.identifier.pubid89494-
pubs.library.collectionEarth and Environmental Sciences publicationsen
pubs.library.teamDS01en
pubs.verification-statusVerifieden
pubs.publication-statusPublisheden
dc.identifier.orcidRussell, B. [0000-0003-1282-9978]en
dc.identifier.orcidConnell, S. [0000-0002-5350-6852]en
Appears in Collections:Obstetrics and Gynaecology publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.