Please use this identifier to cite or link to this item: http://hdl.handle.net/2440/97185
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth
Author: Guo, Z.
Kang, S.
Chen, D.
Wu, Q.
Wang, S.
Xie, W.
Zhu, X.
Baxter, S.
Zhou, X.
Jurat-Fuentes, J.
Zhang, Y.
Citation: PLoS Genetics, 2015; 11(4):e1005124-1-e1005124-32
Publisher: Public Library of Science
Issue Date: 2015
ISSN: 1553-7404
1553-7404
Statement of
Responsibility: 
Zhaojiang Guo, Shi Kang, Defeng Chen, Qingjun Wu, Shaoli Wang, Wen Xie, Xun Zhu, Simon W. Baxter, Xuguo Zhou, Juan Luis Jurat-Fuentes, Youjun Zhang
Abstract: Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.
Keywords: Intestinal Mucosa; Animals; Moths; Bacillus; Alkaline Phosphatase; Bacterial Proteins; ATP-Binding Cassette Transporters; Insect Proteins; Endotoxins; MAP Kinase Signaling System; Protein Binding; Insecticide Resistance; Hemolysin Proteins; Biological Control Agents
Rights: © 2015 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
RMID: 0030029915
DOI: 10.1371/journal.pgen.1005124
Appears in Collections:Genetics publications

Files in This Item:
File Description SizeFormat 
hdl_97185.pdfPublished version1.5 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.