Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/135736
Citations
Scopus Web of Science® Altmetric
?
?
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYe, H.-
dc.contributor.authorWang, S.-
dc.contributor.authorWang, Y.-
dc.contributor.authorGuo, P.-
dc.contributor.authorWang, L.-
dc.contributor.authorZhao, C.-
dc.contributor.authorChen, S.-
dc.contributor.authorChen, Y.-
dc.contributor.authorSun, H.-
dc.contributor.authorWang, S.-
dc.contributor.authorMa, X.-
dc.date.issued2022-
dc.identifier.citationApplied Catalysis B: Environmental, 2022; 314:121484-1-121484-11-
dc.identifier.issn0926-3373-
dc.identifier.issn1873-3883-
dc.identifier.urihttps://hdl.handle.net/2440/135736-
dc.description.abstractWastewater remediation using micro/nanomotors is a hot topic, and MnO2 based materials have become fascinating alternatives to rare noble metal-based micro/nanomotors. Herein, we demonstrate facile and large- scale synthesis of Fe-MnO2 core-shell micromotors for antibiotic pollutant removal. Heat-treatment results in a phase transformation of MnO2 with formation of iron oxides and partially exfoliates the MnO2 nanoplate shell structure to promote mobility. The iron-manganese oxide micromotors exhibit an efficient removal of tetracy- cline antibiotics via a combination of catalytic degradation and adsorptive bubble separation. For the first time, atomic H* was found to participate in the micromotor-assisted degradation process, resulting in optimal Fenton reaction in neutral conditions with a good decontamination performance. Owing to the merits of abundance, magnetic recovery, facile fabrication, good motion, and environmental friendliness, as well as decontamination performance in a wide pH range, these core-shell micromotors demonstrate a promising candidate in practical wastewater treatment.-
dc.description.statementofresponsibilityHeng Ye, Shengnan Wang, Yong Wang, Peiting Guo, Liying Wang, Chengke Zhao, Shuqing Chen, Yimai Chen, Hongqi Sun, Shaobin Wang, Xing Ma-
dc.language.isoen-
dc.publisherElsevier BV-
dc.rights© 2022 Elsevier B.V. All rights reserved.-
dc.source.urihttp://dx.doi.org/10.1016/j.apcatb.2022.121484-
dc.subjectMnO2 micromotors; Fenton reaction; Catalytic degradation; Adsorptive bubbles separation; Antibiotic removal-
dc.titleAtomic H* mediated fast decontamination of antibiotics by bubble-propelled magnetic iron-manganese oxides core-shell micromotors-
dc.typeJournal article-
dc.identifier.doi10.1016/j.apcatb.2022.121484-
dc.relation.granthttp://purl.org/au-research/grants/arc/DP190103548-
pubs.publication-statusPublished-
dc.identifier.orcidWang, S. [0000-0002-1751-9162]-
Appears in Collections:Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.