Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/140214
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Cation Inversion in Slag Magnetite: Energy Loss Measurements of Fe-L₃ Edge Shift between Atom Columns
Other Titles: Cation Inversion in Slag Magnetite: Energy Loss Measurements of Fe-L3 Edge Shift between Atom Columns
Author: Gezzaz, H.
Ciobanu, C.L.
Slattery, A.
Cook, N.J.
Ehrig, K.
Citation: Materials Characterization, 2023; 204:113224-1-113224-8
Publisher: Elsevier
Issue Date: 2023
ISSN: 1044-5803
1873-4189
Statement of
Responsibility: 
Hassan Gezzaz, Cristiana L. Ciobanu, Ashley Slattery, Nigel J. Cook, Kathy Ehrig
Abstract: Determination of cation disorder in inverse spinels like magnetite, Fe3O4, is of broad interest for applications in green technologies, storage devices, and nuclear waste management since cation distributions govern magnetic and electrical properties. Magnetite is a main component of slags produced by smelting of copper ores and contains potentially valuable trace elements. We address cation disorder as a factor controlling the behavior of these elements during atmospheric cooling from 1300 °C. To estimate cation disorder, we combine atomic-scale scanning transmission electron microscopy with electron energy loss spectroscopy. The inversion parameter (0.72) indicates minor partial ordering due to fast cooling from high temperature, resulting in skeletal textures. Trace element incorporation into magnetite, instead of exsolution of discrete nanoparticle phases is promoted. Our findings provide insights into the cooling behavior of spinels and facilitate robust thermodynamic modeling that addresses the stability of structures during cooling from melts. Findings carry implications for critical element recovery and prospects for transforming industrial waste into future resources.
Keywords: cation inversion
EELS-STEM
magnetite
smelter slags
trace elements
Description: Available online 31 July 2023
Rights: © 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/).
DOI: 10.1016/j.matchar.2023.113224
Grant ID: http://purl.org/au-research/grants/arc/LP200100156
Published version: http://dx.doi.org/10.1016/j.matchar.2023.113224
Appears in Collections:Adelaide Microscopy publications
Chemical Engineering publications

Files in This Item:
File Description SizeFormat 
hdl_140214.pdfPublished version9.75 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.